Attached is an Excel assignment based on trading stocks, bonds, and options.
The other two attachments are the materials and similar excel sheets for the assignment.
OPTIONS BASIC
S0
Su
Sd
X
C
P
i
t
ÃÆ’
δ
Today’s Stock Price
Estimated Stock price – upper limit (used in the Binomial Option Pricing Model)
Estimated Stock price – lower limit (used in the Binomial Option Pricing Model)
Exercise Price (Contractual Future Price)
Call Premium (Cu and Cd higher and lower payoffs respectively – used in BOPM)
Put Premium (Pu and Pd higher and lower payoffs, respectively – used in BOPM)
Free interest rate or borrowing rate
Time to exercise
Standard Deviation of the Stock
Dividend Yield
Basic Option:
ï‚·
ï‚·
Call Options Payoff= Max (0, S – X)
Put Option Payoff= Max (0, X – S)
Profit = Payoff – Premium – Bullish View
Profit = Payoff – Premium – Bearish View
Basic Strategies:
ï‚·
ï‚·
ï‚·
ï‚·
Protective Put:
Covered Call:
Straddle:
Collar:
Own the Stock and Buy Put Option – Protective View
Own the Stock and Sell Call – View of selling the stock
Buy Call and Buy Put – Volatility View
Buy Put and Sell Call – Protective View paying $0 premium
Advanced Strategies:
ï‚·
Bull Spreads (Vertical Spread):
o Buy Low (Call) Exercise Price (X1) and Sell High (Call) Exercise Price (X2) with
the same expiration – Bullish – View and paying less premium
o Sell High (Put) Exercise Price (X1) in-the-money and Buy Low (Put) Exercise
Price (X2) out-of-the-money with the same expiration – Bullish View
ï‚·
Bear Spreads (Vertical Spread):
o Buy high (Put) Exercise Price (X1) in the money and Sell Low (Put) Exercise
Price (X2) out-of-the-money with the same expiration – Bearish View
o Buy High (Call) Exercise Price (X1) and Sell Low (Call) Exercise Price (X2) with
the same expiration – Bearish View and paying less premium
ï‚·
Butterfly Spreads (Combination of Bull and Bear Spreads) with 3 strike prices:
o Buy the Low (Call) Exercise Price (X1), Sell two middle (Call) Exercise Price,
Buy the High (Call) Exercise Price (X3) – Stability View and paying less
premium
Option Valuation Approaches:
ï‚·
Binomial Option Pricing Model – Single Period Approach:
o Calculating Call Premiums – Method #1:
ï‚§
C = [S0 – (Sd / ((1 + i) t )] [ (Cu-Cd) / (Su-Sd)] where
Cu = Su – X and Cd = Max (0, Sd- X)
o Calculating Call Premiums – Method #2:
ï‚§
C = [ p (Cu) + (1-p) (Cd) ] / (1+i) where Cu = Su – X and
Cd = Max (0, Sd- X)
o and p = [ (1+i) – d] / (u – d ) for probability
ï‚·
Binomial Option Pricing Model – Two Period Approach:
o Calculating Call Premiums – using the two period approach
ï‚§
[ (p2 Cu2) + (2p (1-p) Cud ]+ (1-p)2 Cd2] / (1 + i)2
where Cu = Su – X, Cud = Max (0, Sud – X) and Cd = (Max (0, Sd – X)
ï‚·
Black-Sholes Valuation Model:
o Calculating Call and Put Premium:
ï‚§
ï‚§
C = S0 e-δt N (d1) – X e-it N (d2) where
P = X e-it N (1 – d2) – S0 e-δt N (1 – d1)
ï‚· d1 = [ ln (S0/X) + (i – δ + ÃÆ’2 /2) t ] / (ÃÆ’ √ð‘¡) and
ï‚· d2 = d1 – (ÃÆ’ √ð‘¡)
ï‚·
Put Call Parity Method
C – P = S0 – X e-it then,
C = S0 – X e-it + P or P = X e-it – S0 + C
Initial Purchase of Stock
Year 0
Buying on Margin
Buying on Margin
without margin
Purchase Number of
Stock Price
Shares
@
Purchased
$
$
$
50.00
50.00
100.00
200
200
100
Total
Cost
$ (10,000)
$ (10,000)
$ (10,000)
Margin Loan
Margin
Obtaining
Percentage Margin Loan
%
(Amount)
50.00% $
5,000
25.00% $
2,500
0% $
-m%*Tcst
Final Sale of Stock
Year 1
without margin
10f. Selling Short
Selling Short
Selling Short
Selling Short
Profit
Sell Stock Number of
Total
Price
Shares
Proceeds
@
Purchased
Payment of
Margin
Loan
Payment of
Interest
Expense
$
$
$
$
$ (5,000)
$ (5,000)
$ (5,000)
$
=-OML
$
(250)
$
(250)
$
(250)
$
PML*APR%
46.00
50.00
54.00
80.00
200
200
200
100
$ 9,200
$ 10,000
$ 10,800
$ 8,000
sold*shares
Initial Short Sale
Credit
Short Sell
Shares
on Short
Stock Price Borrowed
Sale
$
50.00
400
$ 20,000
$
50.00
400
$ 20,000
$
50.00
400
$ 20,000
Sp*shares
Buying the Stock / Cover Short Sale
Payment to
Stock
Purchase
Price
New Shares
$
54 $
(21,600)
$
50 $
(20,000)
$
46 $
(18,400)
-shares*Nsp
Margin Loan
Investment
Annual
Interest
on Margin
Loan (Cost) %
Initial
Cash
by Investor
5.00%
5.00%
$
(5,000)
$
(7,500)
$ (10,000)
TcSt + OML
Profit
HPR%
Net Proceeds Net Profit
After
Less Initial
Loan
Cash by
Payment
Investor
$
3,950
$
4,750
$
5,550
$
8,000
TP+PML+PIE
$ (1,050) 10a(i)
$
(250) 10a(ii)
$
550 10a(iii)
$ (2,000)
=NET+IC
the Stock / Cover Short Sale
Profit/Loss
HPR%
$
(1,600)
-8.0% 10f(i)
$
0.0% 10f(ii)
$
1,600
8.0% 10f(iii)
credit+paym =P.L / credit
Profit /
Initial
Investment
-21.00% 10d(i)
-5.00% 10d(ii)
11.00% 10d(iii)
-20.00%
=NETp/-IC
Hyatt Hotels Corporation
Stock Price
Book Value Equity
$
31.46
Market Value / Using the Stock Price
$
71.00
Intrinsic Value
Dividend Discount Model (DDM)
Average EBITDA Industry Trading Multiples
Discount Cash Flow Valuation Analysis
Average of other methods
$
$
$
$
81.88
93.40
73.28
66.69
using stock price
BUY
BUY
hold
SELL
$
78.81
=avg
Fig. 10.5
If “X” > Stockp = BUY
If “X” is near(positive) Stockp = HOLD
If “X” < Stockp = SELL
Hyatt Hotels Corporation
Intrinsic Value
Using CAPM = k = Rf + ( Beta * Premium )
Intrinsic Value = V0 = [ E(D1) + E (P1)] / (1+k)
Risk Free =
D1=
$1.80
1.18x
Analyst Est.
$1.64 (Average Earnings per share)
9.00%
PE Multiple
17.00x *don’t need*
10.50%
Exp (P1)=
Beta =
Premium=
Market Return (Rf + Premium)=
1.50%
$90.00 (Avg Target by Analysts for 9/
k=
RoR/ CAPM =
12.12%
rf + (beta*Prem)
V0 (Stock Price)=
12.1%
$
81.88
(D1 + P1) / (1+k)
(Average Earnings per share)
(Avg Target by Analysts for 9/19)
Figure 10.6
Hyatt Hotels Corporation
Dividend Discount Model (DDM)
Constant-Growth DDM (Gordon Model) V0 = D1 / (k-g)
D1 =
$1.80
Expected Equity Return (k)=
12.12%
Expected Growth (g) =
10.00%
Expected HPR = E 9r) = [E (d1) + (E(p1) - P0) / P0
Dividend (d1)
$1.80
P1 = P0+D1
$72.80
P0
$ 71.00
V0 (Stock Pice) =
Exp. HPR=
$
93.40
D1*(1+g)/(k-g)
5.07%
(D1+(P1-p0))/p0
= [E (d1) + (E(p1) - P0) / P0
(No growth)
P1 = P0+D1
(D1+(P1-p0))/p0
Figure 10.7
Hyatt Hotels Corporation
Average EBITDA Industry Trading Multiples (Hotels)
SP
SO
SP * SO = EQ
EQ = Stockprice x Shares Outstandin
Symbol
Stock
Price
Stocks
Outstanding
($000)
Choice Hotels International
CHH
$83.20
56,572
4,706,804
Hilton Worldwide Holdings Inc.
HLT
$80.96
298,190
24,141,462
Intercontinental Hotel
IHG
$62.58
190,000
11,890,200
Marcus Corporation
MCS
$40.80
19,680
802,944
Marriott International
MAR
$130.90
346,990
45,420,991
Park Hotels & Resorts Inc.
PK
$32.89
201,180
6,616,810
Belmond (A/K Orient Express Hotels Ltd)
BEL
$17.00
102,960
1,750,320
Wyndham Worldwide
WYN
$136.73
108,640
14,854,347
Hyatt
HOT
$71.00
117,448
8,338,808
EBITDA * Average Multiple
585,000
Company
Hyatt's Enteprise Value
Less Debt
Plus Cash
Equity Price
Shares Outstanding
Stock Price
15.67x
9,167,303 ^
(1,440,000)
879,000
8,606,303
117,448
$
73.28 =Eprice / shares outstanding
Equity
Value
($000)
D
C
EQ + D - C = EV
Q = Stockprice x Shares Outstanding
Debt
(ST<)
($000)
Cash
($000)
E
EV / E
[EBIT+(+dep.)]
Enterprise
Value
($000)
EBITDA
($000)
EBITDA
Multiple
Beta
796,200
37,150
5,465,854
335,560
16.29x
1.13x
7,580,000
423,000
31,298,462
1,760,000
17.78x
1.45x
2,040,000
233,000
13,697,200
843,000
16.25x
1.59x
317,420
18,070
1,102,294
139,930
7.88x
0.32x
8,990,000
366,000
54,044,991
2,850,000
18.96x
1.36x
3,080,000
421,000
9,275,810
734,000
12.64x
1.28x
785,170
162,010
2,373,480
103,750
22.88x
1.51x
8,310,000
1,500,000
21,664,347
1,790,000
12.10x
1.33x
1,440,000
879,000
8,899,808
585,000
15.21x
1.18x
EV = EQ + Debt - Cash
Average
15.60x
Outliers
15.67x
1.24x
8338808
8,899,808
Figure 10.8
Hyatt Hotels Corporation
Discount Cash Flow Valuation Analysis
year =
Discout Cash Flow Valuation Analysis
Historical
Projected
Input Actual
Assumptions Assumptions 12/31/2019
Revenues
Revenue Growth
Cost of Revenues (CoGS)
Operating Expenses (Excl. Non-rec.)
EBIT
Less Taxes (tax rate x of EBIT)
Plus Depreciation
4,763,000
Less Working Capital
Less Capex
Cash Flow
82.0%
13.4%
82.0%
13.0%
7.6%
0.0%
7.8%
22.0%
7.5%
0.0%
7.5%
(3,905,660)
(636,340)
221,000
364,000
(369,999)
215,001
EBITDA
Debt (assuming 5% reduction of intial principal per year)
585,000
1,440,000
Terminal Value
Growth
Assumptions
EBITDA Multiple Method
Perpetuity Method
Average
Less Debt Outstanding (at Exit)
Plus Cash (at Exit)
Equity Value at Terminal
15.67x
Equity Cash Flows
12.1%
8.00%
9.86%
(80% of WACC)
PV (for $1)
$170,647.26
$162,854.59
$155,417.78
$148,320.57
$7,195,153.89
PV (1) =
PV (2) =
PV (3) =
PV (4) =
PV (5) =
0.8919015
0.7954883
0.7094973
0.6328017
0.5643968
PV=
Enterprise Value =
PV of Equity =
$170,647
$162,855
$155,418
$148,321
$7,195,154
$7,832,394
PV of Equity + PV of Debt
$7,832,394
Shares Outstanding
Stock Price
$
117,448
66.69
1
2
3
4
5
6
12/31/2020
12/31/2021
12/31/2022
EXIT YEAR
12/31/2023
12/31/2024
4,905,890
5,249,302
5,616,753
6,009,926
6,430,621
12/31/2025
6,945,071
3.0%
7.0%
7.0%
7.0%
7.0%
8.0%
(4,022,830)
(637,766)
245,295
(53,965)
367,942
(367,942)
(4,304,428)
(682,409)
262,465
(57,742)
393,698
(393,698)
(4,605,738)
(730,178)
280,838
(61,784)
421,257
(421,257)
(4,928,139)
(781,290)
300,496
(66,109)
450,744
(450,744)
(5,273,109)
(835,981)
321,531
(70,737)
482,297
(482,297)
(5,694,958)
(902,859)
347,254
(76,396)
520,880
(520,880)
191,330
204,723
219,053
234,387
250,794
270,858
613,236
1,368,000
656,163
1,296,000
702,094
1,224,000
751,241
1,152,000
803,828
1,080,000
868,134
1,008,000
(EBITDA x EBITDA Multiple)
Next Year's Cash Flow / (Discount Rate - Growth)
12,596,464
14,558,739
13,577,601
(1,080,000)
12,497,601
$191,330
191,330
204,723
219,053
234,387
12,748,396
Cost of Equity Calc
V of Equity + PV of Debt
Interest 12/19 ($ 000s)
Risk Free Rate (5 year)
Premium based on MC =
Hyatt Beta =
1.50%
9.00%
1.18x
Expected Equity Return =
12.1%
75,000
5.21% Rate
=eQ / shares
WACC Calc:
Debt
BV Equity
1,440,000
3,695,000
% Cap
AT RoR
WACC
28.0%
72.0%
100.0%
4.063%
12.120%
1.139%
8.721%
9.860%
Figure 10.9
Chapter 11 - Probem 11-10
INPUT
WEEKENDS
Trading Date
Settlement Date
(T+3 Business Days)
Market Price
Coupon Rate
Coupon Dates
Semi-Annual Coupon
Payment
Face Value
Accrued Basis
Thursday, July 22, 2010
Tuesday, July 27, 2010
101.25
6.750%
skip weekends
M&N (May 31 and Nov 30)
$33.75
$1,000
360 Days
OUTPUT
=+M11+M14
Market Price Paid
$1,012.50
Accrued Expenses
$10.69
Invoice Price
$101.25 x 10
33.75 x (57 / 180) = 10.68
$1,023.19
Total Days
57
DRAW THE DATES
7/27
$33.75
5/31
DAYS =
$33.75
6/30
30
7/31
8/31
27
T + 3 business Days
57 Days
Chapter 11 - Probem 11-9
INPUT
WEEKDAY
Trading Date
Settlement Date
(T+3 Business Days)
Market Price
Coupon Rate
Coupon Dates
Semi-Annual Coupon
Payment
Face Value
Monday, May 15, 2017
Thursday, May 18, 2017
96.50
8.250%
M&S (Mar 31 and Sep 30)
$41.25
$1,000
9/30
10/31
11/30
IN
Accrued Basis
360 Days
OUTPUT
=+M11+M14
Market Price Paid
$965.00
Accrued Expenses
$11.00
Invoice Price
$96.50 x 10
41.25 x (48 / 180) = 11.00
$976.00
Total Days
48
DRAW THE DATES
5/18
$33.75
3/31
DAYS =
$33.75
4/30
30
5/31
6/30
18
T + 3 business Days
48 Days
7/31
8/31
9/30
INPUT
Trading Date
Settlement Date
(T+3 Business Days)
Market Price
Coupon Rate
Coupon Dates
Semi-Annual Coupon
Payment
Face Value
Accrued Basis
Thursday, July 22, 2010
Tuesday, July 27, 2010
101.25
6.750%
M&N (May 31 and Nov 30)
$33.75
$1,000
360 Days
OUTPUT
=+M11+M14
Market Price Paid
$1,012.50
Accrued Expenses
$10.69
Invoice Price
INPUT
Total Days
Trading Date
Settlement Date
(T+3 Business Days)
Market Price
Coupon Rate
Coupon Dates
Semi-Annual Coupon
Payment
Face Value
$1,023.19
57
**
Monday, May 15, 2017
Thursday, May 18, 2017
96.50
8.250%
M&S (Mar 31 and Sep 30)
$41.25
$1,000
IN
Accrued Basis
360 Days
OUTPUT
=+M11+M14
Market Price Paid
$965.00
Accrued Expenses
$11.00
Invoice Price
Total Days
$976.00
48
**
SS20
Calculate the Market Price, Invoice Price and Current Yield of the Corporate Bond given the following information (Based T+3
INPUT
weekends
Trading Date
Settlement Date
(T+3 Business Days)
Market Price
Coupon Rate
Coupon Dates
Semi-Annual Coupon
Payment
Face Value
Accrued Basis
Friday, March 20, 2020
Wednesday, March 25, 2020
98.25
8.500%
skip weekends
June 30, December 31
$42.50
$1,000
360 Days
OUTPUT
=+M11+M14
Market Price Paid
$982.50
Accrued Expenses
$20.07
Invoice Price
33.75 x (57 / 180) = 10.68
$1,002.57
Total Days
CY
$101.25 x 10
100
85
-0.262778553
YIELD TO MAURITY (YTM), YIELD TO CALL (YTC), YIELD TO WORSE (YTW
EXCEL FORMULAS
YTM
Issuance Date =
Trading Date =
1/16/2017
Friday, March 20, 2020
Settlement Date (T+3) (SD) Wednesday, March 25, 2020 **+3+5**
Maturity Date / Call Date (MD)
6/18/2027
Coupon Rate (CR)
8.50%
Market Price (MP)
98.25
Redemption (Final payment % of Par) (R )
100.00
Frequency (payments per year) (F)
2
Call Provision
= YIELD (SD,MD,CR,MP,R,F)
rate = cRATE
pv = Market price
Face Value
Coupon Payment $
Years (Term)
YTM=
8.828%
=yield
YTW=
#REF!
=min
$1,000
$43 =+E10*E21/2
10 Years
CY=
following information (Based T+3 and 360 days)
Maturity Day =
6/18/2027
Redemption Price =
100
First Call Date = Accrued Interest= 20.069
First Call Price = 103
IELD TO WORSE (YTW) and CURRENT YIELD (CY)
8.6514%
=cPAY*freq/(MP*10)
cPAY =CR*Fvalue/Freq
A
B
C
D
E
F
G
YIELD TO MAURITY (YTM), YIELD TO CALL (YTC), YIELD TO WORSE (YTW) and C
EXCEL FORMULAS
YTM
Issuance Date =
Trading Date =
1/16/2017
Friday, March 20, 2020
Settlement Date (T+3) (SD)
Wednesday, March 25, 2020 **+3+5**
Maturity Date / Call Date (MD)
6/18/2027
Coupon Rate (CR)
8.50%
Market Price (MP)
98.25
Redemption (Final payment % of Par) (R )
100.00
Frequency (payments per year) (F)
2
Call Provision
= YIELD (SD,MD,CR,MP,R,F)
rate = cRATE
pv = Market price
YTM=
8.828%
YTC=
=yield
YTW=
8.828%
CY=
=min
$1,000
$43 =+E10*E21/2
10 Years
Face Value
Coupon Payment $
Years (Term)
Yield to Maturity Calculation
Settlement Date (SD) =
1/15/2018
#
pmts
Maturity Date (MD) =
1/15/2025
0
Coupon Rate (CR) =
4.250%
1
CALCULATING THE YTM
Market Price (MP) =
Redemption value % (R) =
Coupon Pmts per year (Frequency (F) =
Yield to Maturity (YTM) =
2
96.179
100
3
2
4
5
4.902%
= YIELD (SD,MD,CR,MP,R,F)
6
rate = cRATE
7
pv = Market price
8
9
10
11
12
13
14
hw Chapter 11 - Probem 11-14
CALCULATING THE YTM
Settlement Date (SD) =
Maturity Date (MD) =
Coupon Rate (CR) =
Market Price (MP) =
Redemption value % (R) =
Coupon Pmts per year (Frequency (F) =
Yield to Maturity (YTM) =
2/15/2020
6/30/2025
7.500%
98.750
100
2
7.79%
=YIELD(D6,D7,D8,D9,D10,D11)
= YIELD (SD,MD,CR,MP,R,F)
INTERNAL RATE OR RETURN METHOD
IRR =
#
Pmts
Coupon
Dates
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
1/16/2019
7/16/2019
1/16/2020
7/16/2020
1/16/2021
7/16/2021
1/16/2022
7/16/2022
1/16/2023
7/16/2023
1/16/2024
7/16/2024
1/16/2025
7/16/2025
1/16/2026
7/16/2026
1/16/2027
YTM
(982.50)
42.50
42.50
42.50
42.50
42.50
42.50
42.50
42.50
42.50
42.50
42.50
42.50
42.50
42.50
42.50
42.50
1,042.50
8.797%
=IRR(E28:E45)*2
H
I
J
K
L
TO WORSE (YTW) and CURRENT YIELD (CY)
YTC1
YTC2
YTC3
YTC4
YTC5
1/16/2017
3/20/2020
1/16/2017
3/20/2020
1/16/2017
3/20/2020
1/16/2017
3/20/2020
1/16/2017
3/20/2020
3/25/2020
1/16/2018
8.50%
98.25
105.00
2
3/25/2020
1/16/2019
8.50%
98.25
104.00
2
3/25/2020
1/16/2020
8.50%
98.25
103.00
2
3/25/2020
1/16/2021
8.50%
98.25
102.00
2
3/25/2020
1/16/2022
8.50%
98.25
101.00
2
103.00
-1
102.00
-1
101.00
-1
105.00
=(par*5%)+par
NA
-1
104.00
NA
NA
13.236%
=yield
8.6514%
=cPAY*freq/(MP*10)
cPAY =CR*Fvalue/Freq
Remaining
Dates
Cash
Flow
(961.79)
7/15/2018
21.25
1/15/2019
21.25
7/15/2019
21.25
1/15/2020
7/15/2020
21.25
21.25
1/15/2021
21.25
7/15/2021
21.25
1/15/2022
21.25
7/15/2022
21.25
1/15/2023
21.25
7/15/2023
21.25
1/15/2024
21.25
7/15/2024
21.25
=YIELD(J9,J9,J11,J12,J13)
=YIELD(SD,MD,CR,MP,R,F)
10.085%
1/15/2025
1,021.25
IRR =
4.902%
=IRR(I7:I21)*2
Figure 11.5
YTC1
YTC2
YTC3
YTC4
YTC5
(982.50)
1,082.50
(982.50)
42.50
42.50
1,072.50
(982.50)
42.50
42.50
42.50
42.50
42.50
1,062.50
(982.50)
42.50
42.50
42.50
42.50
42.50
42.50
42.50
1,052.50
9.777%
9.246%
=+$E$10/$E$13*$E$21+K12*10
Payment $40
Redemption $1020
N/A
20.356%
11.693%
=IRR(I28:I45)*2
Figure 11.6
B
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
C
D
E
F
MARKET PRICE & INVOICE PRICE CALCULATION
CALCULATING THE PRICE
Settlement Date=
Maturity Date=
Coupon Rate=
Yield to Maturity=
Redemption value %=
Coupon Pmts per year=
3/15/2015
1/15/2025
4.250%
4.740%
100
2
Market Price =
Market Value =
96.179
$
Day since last coupon=
Days in coupon period=
Accrued Interest=
$
Invoice Price=
$
961.79
60
180
7.08
968.87
=PRICE(D5,D6,D7,D8,D9,D10)
=+D12*10
=COUPDAYBS(D5,D6,D10,0)
=COUPDAYS(D5,D6,D10,0)
=(last coupon/cPeriod)*cRATE*par/freq
Acrd int + MarketValue
Figure 11.4
=+D18+D14
=(D16/D17)*D7*1000/2
A
B
C
D
E
F
G
H
YIELD TO MAURITY (YTM), YIELD TO CALL (YTC), YIELD TO WORSE (YTW) and C
EXCEL FORMULAS
YTM
YTC1
1/16/2017
Wednesday, July 11, 2018
Issuance Date =
Trading Date =
Settlement Date (T+3) (SD)
Maturity Date / Call Date (MD)
Coupon Rate (CR)
Market Price (MP)
Redemption (Final payment % of Par) (R )
Frequency (payments per year) (F)
1/16/2017
7/11/2018
Monday, July 16, 2018 **+5+3**
7/16/2018
1/16/2018
8.00%
98.50
105.00
2
1/16/2027
8.00%
98.50
100.00
2
Call Provision
105.00
=(par*5%)+par
= YIELD (SD,MD,CR,MP,R,F)
rate = cRATE
pv = Market price
YTM=
8.249%
YTC=
=yield
YTW=
8.249%
=yield
CY=
8.1218%
=cPAY*freq/(MP*10)
cPAY =CR*Fvalue/Freq
=min
$1,000
$40 =+E10*E21/2
10 Years
Face Value
Coupon Payment $
Years (Term)
NA
Yield to Maturity Calculation
#
Remaining
pmts
Dates
CALCULATING THE YTM
Settlement Date (SD) =
1/15/2018
Maturity Date (MD) =
1/15/2025
0
Coupon Rate (CR) =
4.250%
1
7/15/2018
2
1/15/2019
100
3
7/15/2019
2
4
5
1/15/2020
= YIELD (SD,MD,CR,MP,R,F)
6
1/15/2021
rate = cRATE
7
7/15/2021
pv = Market price
8
1/15/2022
9
7/15/2022
10
1/15/2023
11
7/15/2023
12
1/15/2024
13
7/15/2024
Market Price (MP) =
Redemption value % (R) =
Coupon Pmts per year (Frequency (F) =
Yield to Maturity (YTM) =
96.179
4.902%
7/15/2020
14
1/15/2025
IRR =
=IRR(I7:I21)*2
hw Chapter 11 - Probem 11-14
CALCULATING THE YTM
Settlement Date (SD) =
2/15/2020
Maturity Date (MD) =
6/30/2025
Coupon Rate (CR) =
7.500%
Market Price (MP) =
98.750
Redemption value % (R) =
100
Coupon Pmts per year (Frequency (F) =
2
Yield to Maturity (YTM) =
7.79%
=YIELD(D6,D7,D8,D9,D10,D11)
= YIELD (SD,MD,CR,MP,R,F)
INTERNAL RATE OR RETURN METHOD
IRR =
#
Pmts
Coupon
Dates
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
1/16/2019
7/16/2019
1/16/2020
7/16/2020
1/16/2021
7/16/2021
1/16/2022
7/16/2022
1/16/2023
7/16/2023
1/16/2024
7/16/2024
1/16/2025
7/16/2025
1/16/2026
7/16/2026
1/16/2027
YTM
(985.00)
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
1,040.00
8.249%
=IRR(E28:E45)*2
YTC1
=+$E$10/$E$13*$E$21+K
Payment $40
Redemption $1020
N/A
I
J
K
L
RSE (YTW) and CURRENT YIELD (CY)
YTC2
YTC3
YTC4
YTC5
1/16/2017
7/11/2018
1/16/2017
7/11/2018
1/16/2017
7/11/2018
1/16/2017
7/11/2018
7/16/2018
1/16/2019
8.00%
98.50
104.00
2
7/16/2018
1/16/2020
8.00%
98.50
103.00
2
7/16/2018
1/16/2021
8.00%
98.50
102.00
2
7/16/2018
1/16/2022
8.00%
98.50
101.00
2
103.00
-1
102.00
-1
101.00
-1
-1
104.00
=(par*5%)+par
19.289%
cPAY*freq/(MP*10)
AY =CR*Fvalue/Freq
Cash
Flow
(961.79)
21.25
21.25
21.25
21.25
21.25
21.25
21.25
21.25
21.25
21.25
21.25
21.25
21.25
11.006%
9.415%
=YIELD(J9,J9,J11,J12,J13)
=YIELD(SD,MD,CR,MP,R,F)
8.757%
1,021.25
4.902%
=IRR(I7:I21)*2
Figure 11.5
YTC2
YTC3
YTC4
YTC5
(985.00)
1,080.00
(985.00)
40.00
40.00
1,070.00
(985.00)
40.00
40.00
40.00
40.00
40.00
1,060.00
(985.00)
40.00
40.00
40.00
40.00
40.00
40.00
40.00
1,050.00
9.177%
8.666%
+$E$10/$E$13*$E$21+K12*10
Payment $40
Redemption $1020
19.289%
11.006%
=IRR(I28:I45)*2
Figure 11.6
Chapter 11 - Probem 11-14
Face Value
Coupon Rate
Life in Years
Yield
Frequency
Bond Price
1,000
7.75%
4
8.25%
2
$983.25 =-pv(yield/freq,nper*freq,cRATE*facevalue/freq,facevalue)
Macaulay Duration
3.51
Modified Duration
3.4% =duration/(1+yield/nper)/100
Convexity
Period
0
1
2
3
4
5
6
7
8
1.31% =convex / bPrice
12.88
Cash
Flow
PV Cash
Flow
($983.25)
38.75
38.75
38.75
38.75
38.75
38.75
38.75
1,038.75
PRICE
37.21 =$facevalue*$cRATE/$freq
35.74 PVCF =PV($yeild/$freq,period,,-CF)
34.32
32.96
31.66
30.40
29.20
751.75 =$fvalue*$cRATE/$freq + PAR(facevalue)
983.25
SUM PVCF
BOND PRICE, DURATION & CONVEXITY
Sensitivity to interest rate movements
Face Value
Coupon Rate
Remaining Years
Yield
Frequency
Bond Price
1,000
6.25%
5.5836
(Maturity -Settment Date )/365 days)
9.75%
2
$852 =-PV(E9/E10,E8*E10,E7*E6/E10,E6)
Macaulay Duration
4.31
Modified Duration
4.2% =+E13/(1+E9/E8)/100
Convexity
Period
0
1
2
3
4
5
6
7
8
9
10
18.71
Cash
Flow
2.20% =+E17/E11
PV Cash
Flow
($851.99)
31.25
31.25
31.25
31.25
31.25
31.25
31.25
31.25
31.25
1,031.25
29.80
28.41
27.09
25.83
24.63
23.49
22.39
21.35
20.36
640.68
=+C21/(1+($E$9/2))^B21
PRICE
864.05
=SUM(D20:D30)
q,facevalue)
Weighted
Duration
Calc
3.785%
3.635%
3.491%
3.353%
3.220%
3.092%
2.970%
76.455%
0.03785 =PVCF/$bprice
0.07270 =weighted*periods
0.10473
0.13411
0.16099
0.18554
0.20788
6.11639
100.000%
7.02018 =SUM
DURATION
3.51 sum/freq
=+G31/2(freq)
Convexity
Factor years
Calc
2.000
6.000
12.000
20.000
30.000
42.000
56.000
72.000
74.43 =periods+periods^2
214.44 =factoryrs*PVCF
411.90
659.30
949.77
1,277.00
1,635.21
54,125.69
59,347.74
CONVEXITY
sum
12.88 =((sum/((1+yield)^2))/(bprice*freq^2))
Weighted
3.449%
3.288%
3.135%
2.990%
2.851%
2.718%
2.592%
2.471%
2.356%
74.149%
100.000%
DURATION
Duration Calc
Factor years
0.03449 =+F21*B21
0.06577
0.09406 =+B21+B21^2
0.11959
0.14254
0.16309
0.18143
0.19771
0.21208
7.41494
8.62569 =SUM(G21:G30)
4.31 =+G31/2
2.000
6.000
12.000
20.000
30.000
42.000
56.000
72.000
90.000
110.000
CONVEXITY
Convexity
Calc
59.59
170.47
325.10
516.64
738.94
986.43
1,254.11
1,537.47
1,832.50
70,475.30
77,896.56
=+I21*D21
=SUM(J20:J30)
18.71
=+((J31/((1+E9)^2))/(D33*E10^2))
Figure 11.12
Figure 11.12
DURATIO
DURATION AND CONVEXITY FORMULAS
Problem 13-1
INPUT
OUTPUT
Action
Option
Exercise
Price
Premium
Stock
Price
Payoff
Profit
/Loss
BE Stock
Buy
Call
140
9
165
25
16
149
Buy
Call
62
5
59
0
-5
67
Buy
Put
46
5
38
8
3
41
Buy
Put
66
9
66
0
-9
57
Sell
Put
132
11
126
-6
5
121
Sell
Put
127
9
128
0
9
118
Sell
Call
156
6
152
0
6
162
Sell
Call
143
8
145
-2
6
151
Sell
Straddle
120
21
135
-15
6
141
Buy
Straddle
95
13
125
30
17
108
Problem 13-1
Please Complete the Output section given the information below
INPUT
OUTPUT
Action
Option
Buy
Buy
Buy
Buy
Sell
Sell
Sell
Call
Call
Put
Put
Put
Put
Call
Exercise
Price
140
62
46
66
132
127
156
9
5
5
9
11
9
6
Stock
Price
165
59
38
66
126
128
152
Sell
Call
143
8
145
Sell
Buy
Straddle
Straddle
120
95
21
13
135
125
Premium
25
0
8
0
-6
0
0
Profit
/Loss
16
-5
3
-9
5
9
6
-2
6
151
-15
30
6
17
99
82
Payoff
s-x
x-s
s-x
x-s
s-x*
call*
BE Stock
149
67
41
57
121
118
162
BE Stock
2
99
82
177.78%
-100.00%
60.00%
-100.00%
n/a
n/a
n/a
BE Stock
n/a
2
141
28.57%
108
130.77%
Problem 13-2a-13.2b
CALL
Exercise
Price
PUT
March
April
May
March
April
May
150
20.00
21.50
23.00
3.00
3.50
4.45
155
15.50
16.25
17.75
4.10
4.90
5.90
160
12.50
12.85
13.50
5.30
6.00
6.80
165
8.10
9.00
10.65
7.00
8.00
9.20
170
5.20
6.30
8.50
9.40
10.75
12.45
175
3.25
4.25
5.75
13.00
14.30
14.20
180
2.50
3.40
4.45
15.00
16.10
17.75
(X)
INPUT
a
OUTPUT
Action
Date
Option
Exercise
Price
Stock
Price
Premium
(Pay)/Rec
Payoff
Buy
March
Call
150
175
-20.00
25
Buy
April
Call
165
165
-9.00
0
Buy
May
Put
170
160
-12.45
10
Buy
March
Put
180
162
-15.00
18
Sell
May
Put
165
125
9.20
-40
Sell
April
Put
175
165
14.30
-10
Sell
May
Call
155
180
17.75
-25
Sell
April
Call
150
165
21.50
-15
Sell
May
Straddle
175
200
19.95
-25
Buy
March
Straddle
180
185
-17.50
5
Action
Date
Option
Exercise
Price 1
Exercise
Price 2
Stock
Price
Premium
(Pay)/Rec
Buy
March
Bull
Call
Spread
150
160
170
-7.50
Buy
April
Bull
Put
Spread
160
180
162
10.10
INPUT
b
May
Bear
Put
Spread
170
180
150
-5.30
April
Bear
Call
Spread
160
170
170
6.55
Buy
March
Butterfly
Call
Spread
150
160
165
-1.50
Sell
May
Butterfly
Call
Spread
170
180
200
1.45
Buy
Buy
Problem 13-2a-13.2b
Use the table below to complete the spreadsheets below
CALL
Exercise
Price
(X)
150
155
160
165
170
175
180
PUT
March
April
May
March
April
May
20.00
15.50
12.50
8.10
5.20
3.25
2.50
21.50
16.25
12.85
9.00
6.30
4.25
3.40
23.00
17.75
13.50
10.65
8.50
5.75
4.45
3.00
4.10
5.30
7.00
9.40
13.00
15.00
3.50
4.90
6.00
8.00
10.75
14.30
16.10
4.45
5.90
6.80
9.20
12.45
14.20
17.75
INPUT
a
OUTPUT
Action
Date
Option
Buy
Buy
Buy
Buy
Sell
Sell
Sell
Sell
Sell
Buy
March
April
May
March
May
April
May
April
May
March
Call
Call
Put
Put
Put
Put
Call
Call
Straddle
Straddle
Exercise
Price
150
165
170
180
165
175
155
150
175
180
Stock
Price
175
165
160
162
125
165
180
165
200
185
Premium
(Pay)/Rec
-20.00
-9.00
-12.45
-15.00
9.20
14.30
17.75
21.50
19.95
-17.50
Payoff
25
0
10
18
-40
-10
-25
-15
-25
5
INPUT
b
Action
Date
Buy
March
Buy
April
Buy
May
Buy
April
Buy
March
Sell
May
LONG
SHORT
Option
Bull
Call
Spread
Bull
Put
Spread
Bear
Put
Spread
Bear
Call
Spread
Butterfly
Call
Spread
Butterfly
Call
Spread
Exercise
Price 1
Exercise
Price 2
Stock
Price
Premium
(Pay)/Rec
150
160
170
-7.50
160
180
162
10.10
170
180
150
-5.30
160
170
170
6.55
150
160
165
-1.50
170
180
200
1.45
X
call
BUY
SELL
SELL
BUY
150
155
155
160
X
8.50
-5.75
-5.75
4.45
1.45
call
SELL
BUY
BUY
SELL
170
175
175
180
Profit /Loss BE (Stock)
HPR %
5.00
170.00
25.00%
-9.00
174.00
-100.00%
-2.45
157.55
-19.68%
3.00
165.00
20.00%
-30.80
174.20
4.30
189.30
-7.25
137.25
6.50
128.50
BE
(Stock)
-5.05
194.95
155.05
-12.50
197.50
162.50
OUTPUT
Total
Payoff
Total
STRATEGY
Profit/Loss
10
2.50
Bull Call Spread = Buy Low Call / Sell High Call
-18
-7.90
Bull Put Spread = Buy Low Put / Sell High Put
10
4.70
Bear Put Spread = Buy High Put / Sell Low Put
-10
-3.45
Bear Call Spread = Buy High Call / Sell Low Call
0
-1.50
Long Buttefly Call Spread = Buy High Call / Buy Low Call / Sell Average Call twice
0
1.45
Short Buttefly Call Spread =Sell High Call / Sell Low Call /Buy Average Call twice
Profit /Loss BE (Stock)
5.00
-9.00
-2.45
3.00
-30.80
4.30
-7.25
6.50
-5.05
-12.50
170.00
174.00
157.55
165.00
174.20
189.30
137.25
128.50
155.05
197.50
HPR %
25.00%
-100.00%
-19.68%
20.00%
3.3478261
BE2
(Stock)
194.95
162.50
OUTPUT
Total
Payoff
Total
Profit/Loss
10
2.50
-18
-7.90
10
4.70
-10
-3.45
0
-1.50
0
1.45
STOCK p
165
165
165
165
STOCK p
200
200
200
200
15.00
-10
-10
5
0.00
-30.00
25
25
-20
0.00
Problems 13.4 a-13.4b
INPUT
OUTPUT
Single Period (Call Option)
Method 2 (Probability Method)
PERIOD 0
PERIOD 1
S = $ 45.00
u=
1.25x
d=
0.95x
X = $ 49.50
i=
5.00%
Freq=
1
Periods=
1
S=
p=
1-p=
C(E)=
need one way put!!
Su=
56.25
Sd =
42.75
45.00
0.33
0.67
2.14 European Option Premium
OUTPUT
FORMULAS
Method 1 (Leverage 6-Step Method)
Su = S . u
Sd = S . d
Cu=
6.75
Step 1
Su - Sd =
13.50
Step 2
Cu - Cd =
6.75
Step 3
h=
0.50
Step 4
Step 5
Step 6
PV (Sd) =
S-PV(Sd)=
h(S-Pv(Sd)=
40.71
4.29
2.14
2.14
Cd=
-
Cu = Max (0, Su - X)
Cd = Max (0, Sd - X)
p = [(i+1) - d )] / (u - d)
C= [ (p . Cu) + [(1-p) Cd)] ] / [(1+i)^Fre
h=
0.500 Hedge Ratio (Buy Shares / Write Calls)
TWO-PERIOD BINOMIAL OPTION PRICING MODEL - Call and Put Opt
INPUT
OUTPUT
CALL OPTION
PERIOD 0
PERIOD 1
PERIOD 2
Su^2=
93.75
S = $ 60.00
u=
1.25x
d=
0.80x
X = $ 55.00
i=
3.50%
Frequency=
1
Periods=
2
Frequency:
( Annual =1,
Semiannual = 2,
Quarterly=4)
Su=
75.00
Cu=
20.00
S=
(Payoff)
60.00
Sd =
p=
1-p=
C(E)=
C(A)=
PUT OPTION
48.00
(Payoff)
0.52
0.48
60.00
Cd=
Sd^2=
12.19 European Option Premium
10.09 American Option Premium
PERIOD 0
PERIOD 1
Su^2=
S = $ 60.00
u=
1.25x
d=
0.80x
X = $ 55.00
i=
3.50%
Frequency=
1
Periods=
2
Frequency:
( Annual =1,
Semiannual = 2,
Quarterly=4)
Su=
S=
P(E)=
P(A)=
0.52
0.48
PERIOD 2
93.75
75.00
0.00
Pu=
(Payoff)
60.00
Sd =
p=
1-p=
38.40
60.00
48.00
7.00
(Payoff)
Pd=
Sd^2=
3.54 European Option Premium
3.23 American Option Premium
38.40
ll and Put Options
FORMULAS
Su = S . u
Cu^2=
38.75
(Payoff)
21.86
Sd = S . d
Su^2 = S . u^2
Sd^2 = S . d^2
Cud=
5.00
(Payoff)
2.52
Cd^2=
0.00
(Payoff)
Pu^2=
0.00
(Payoff)
Pud=
0.00
(Payoff)
7.66
Pd^2=
16.60
(Payoff)
Cu^2 = Max (0, Su^2 - X)
Cd^2 = Max (0, Sd^2 - X)
Cud = Max (0, Sud - X)
p = [(i+1) - d )] / (u - d)
Cu= [ (p . Cu^2) + [(1-p) Cud)] ] / [(1+i)^Freq]
Cd= [ (p . Cud) + [(1-p) Cd^2)] ] / [(1+i)^Freq]
C= [ (p . C1) + [(1-p) C2)] ] / [(1+i)^Freq]
Su = S . u
Sd = S . d
Su^2 = S . u^2
Sd^2 = S . d^2
Pu^2 = Max (0, X - Su^2)
Pd^2 = Max (0, X - Sd^2)
Pud = Max (0, X - Sud )
p = [(i+1) - d )] / (u - d)
Pu= [ (p . Pu^2) + [(1-p) Pud)] ] / [(1+i)^Freq]
Pd= [ (p . Pud) + [(1-p) Pd^2)] ] / [(1+i)^Freq]
P= [ (p . P1) + [(1-p) P2)] ] / [(1+i)^Freq]
TWO-PERIOD BINOMIAL OPTION PRICING MODEL WITH DIVIDENDS
INPUT
OUTPUT
Using Dividend Yield %
S = $ 100.00
u=
1.10x
d=
0.85x
X = $ 105.00
i=
3.50%
Div (δ)=
4.00% (at 1st Period)
PERIOD 0
PERIOD 1
Su=
S=
110.00
5.00
PERIOD 1(x-div)
x-dividend
105.60
(Payoff)
100.00
Sd =
85.00
0.00
81.60
(Payoff)
Annual=
Periods=
1
2
p=
1-p=
0.74
0.26
C(E)=
C(A)=
5.70 European Option Premium
3.57 American Option Premium
Using Dividend Yield $
PERIOD 0
S = $ 100.00
u=
1.10x
d=
0.85x
X = $ 90.00
i=
3.50%
Div $ = $ 2.00 (at 1st Period)
PERIOD 1
Su=
S=
110.00
20.00
1
2
Sd =
p=
1-p=
C(E)=
C(A)=
x-dividend
108.00
(Payoff)
100.00
85.00
0.00
(Payoff)
Annual=
Periods=
PERIOD 1(x-div)
0.74
0.26
15.37 European Option Premium
14.30 American Option Premium
83.00
WITH DIVIDENDS- Call Options
FORMULAS
PERIOD 1(x-div)
PERIOD 2
Su^2=
116.16
x-dividend
Cu =
89.76
89.76
Cd =
Sd^2=
91.80
91.30
Pd=
Sd^2=
70.55
11.16
Cud=
-
Cd^2=
0.00
Cu^2=
28.80
Cud=
1.80
Cd^2=
0.00
x-dividend = Su (1-δ)
x-dividend = Sd (1-δ)
7.98
-
69.36
PERIOD 1(x-div)
PERIOD 2
Su^2=
118.80
x-dividend
Pu=
Cu^2=
x-dividend = Su - Div $
x-dividend = Sd - Div $
21.04
1.29
Figure 13.18
Problem 13.6
INPUT
OUTPUT
Using Dividend Yield %
S= $
u=
d=
X= $
i=
Div (δ)=
(at 1st Period)
Annual=
Periods=
100.00
1.15x
0.90x
110.00
5.00%
7.00%
PERIOD 0
PERIOD 1
Su=
S=
115.00
5.00
(Payoff)
100.00
Sd =
90.00
0.00
(Payoff)
1
2
p=
1-p=
C(E)=
PERIOD 1(x-div)
Su^2=
x-dividend
106.95
0.60
0.40
11.02 European Option Premium
83.70
Sd^2=
FORMULAS
PERIOD 2
122.99
Cu =
96.26
96.26
Cd =
75.33
Pu^2=
-
Pud=
Pud=
13.75
13.75
Pd^2=
34.67
5.24
21.06
x-dividend = Su (1-δ)
x-dividend = Sd (1-δ)
BLACK-SCHOLES VALUATION
CALL OPTION
A
B
C
D
E
4
5 INPUT
6
7
Standard Deviation (ÃÆ’) = 0.4
8
Expiration (in years) (T) = 0.5
9
Risk-Free Rate (Annual) (i) = 0.05
10
Stock Price (S ) = 100
11
Exercise Price (X) = 110
12
Dividend Yield (annual) (δ) = 0
13
F
G
H
OUTPUT
d1 =
d2 =
N(d1) =
N(d2) =
C=
-0.107
-0.390
0.457
0.348
8.3696
BLACK-SCHOLES VALUATION
PUT OPTION
A
B
C
D
20
21 INPUT
22
23
Standard Deviation (ÃÆ’) = 0.4
24
Expiration (in years) (T) = 0.5
25
Risk-Free Rate (Annual) (i) = 0.05
26
Stock Price (S ) = 100
27
Exercise Price (X) = 110
28
Dividend Yield (annual) (δ) = 0
29
E
F
G
OUTPUT
d1 =
d2 =
N(d1) =
N(d2) =
P=
-0.107
-0.390
0.457
0.348
15.6537
H
I
FORMULAS
=(LN(D11/D12)+(D10-D13+(D8^2)/2)*D9)/(D8*SQRT(D9))
=+G8-D8*SQRT(D9)
=NORMSDIST(G8)
=NORMSDIST(G9)
=+D11*EXP(-D13*D9)*G10-D12*EXP(-D10*D9)*G11
Figure 13.21
I
FORMULAS
=(LN(D11/D12)+(D10-D13+(D8^2)/2)*D9)/(D8*SQRT(D9))
=+G8-D8*SQRT(D9)
=NORMSDIST(G8)
=NORMSDIST(G9)
=D11*EXP(-D9*D8)*(1-G10)-D10*EXP(-D12*D8)*(1-G9)
Figure 13.22
Black Schole
S=100
x=110
t=.5
i=5.0
s=.40
no dividend
D1
D1 NORMALYZED
D2
100
110
0.5
0.05
0.4
0
-0.10716
0.45733
First Part
d1
d2
-0.09531
+
Second Part
0.065
/
=
MAX(0,S-X)
Figuring out call
=
Max(0,x-s)
Firguring out put
Third Part
0.282843
Problem 13.5
INPUT
OUTPUT
CALL OPTION
PERIOD 0
PERIOD 1
PERIOD 2
Su^2=
93.60
S = $ 65.00
u=
1.20x
d=
0.95x
X = $ 60.00
i=
5.00%
Frequency=
1
Periods=
2
Frequency:
( Annual =1,
Semiannual = 2,
Quarterly=4)
Su=
78.00
Cu=
18.00
S=
(Payoff)
65.00
Sd =
p=
1-p=
C(E)=
0.40
0.60
74.10
61.75
1.75
(Payoff)
Cd=
Sd^2=
11.01 European Option Premium
58.66
FORMULAS
Su = S . u
Cu^2=
33.60
(Payoff)
20.86
Sd = S . d
Su^2 = S . u^2
Sd^2 = S . d^2
Cud=
14.10
(Payoff)
5.37
Cd^2=
0.00
(Payoff)
Cu^2 = Max (0, Su^2 - X)
Cd^2 = Max (0, Sd^2 - X)
Cud = Max (0, Sud - X)
p = [(i+1) - d )] / (u - d)
Cu= [ (p . Cu^2) + [(1-p) Cud)] ] / [(1+i)^Freq]
Cd= [ (p . Cud) + [(1-p) Cd^2)] ] / [(1+i)^Freq]
C= [ (p . C1) + [(1-p) C2)] ] / [(1+i)^Freq]
Problem 13.8
Call Premium =
$
13.00
Stock Price (S) =
$
65.00
Exercise Price (x) =
$
60.00
Risk Free Rate (i) =
2.00%
Time (t) =
1
P = Xe(-it) – S + C
e
(-it)
Put Premium=
0.980199
$
6.81
year
BOND VALUATION & ANALYSIS
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
B
C
D
E
F
G
MARKET PRICE/INVOICE PRICE (Manual)
Manual Example:
Bought (Traded) F&A the 7.50% Corporate Bond at 98.50 on Thursday, January 17, 2019
Trading Date =
Settlement Date (T+3 BD) =
Market Price =
=PRICE(M4,M5,M6,M7,M8,M9)
Coupon Rate =
=COUPDAYBS(M4,M5,2,1)
Coupon Dates =
=COUPDAYS(M4,M5,2,1)
Face Value =
=(M12/M13)*M6*100/2
Accrued Basis=
=+M11+M14
Market Price Paid =
Accrued Expenses =
Invoice Price =
Thursday, January 17, 2019
Tuesday, January 22, 2019
98.50
7.500%
F&A (Feb 28 and Aug 31)
$1,000
360 Days
$985.00
$29.58
$1,014.58
1/22
$37.50
8/31
DAYS =
Total Days=
B
9/30
10/31
11/30
12/31
30
142
30
30
30
22
C
D
E
F
G
MARKET PRICE/INVOICE PRICE (Using Excel)
CALCULATING THE PRICE
Settlement Date=
Maturity Date=
Coupon Rate=
Yield to Maturity=
Redemption value %=
Coupon Pmts per year=
Flat Price (% Par)
Day since last coupon=
Days in coupon period=
Accrued Interest=
Invoice Price=
Current Yield =
3/15/2015
1/15/2025
4.250%
4.740%
100
2
CALCULATING THE YTM
Settlement Date=
Maturity Date=
Coupon Rate=
Market Price =
Redemption value %=
Coupon Pmts per year=
96.179 =PRICE(M4,M5,M6,M7,M8,M9)
Yield to Maturity (YTM) =
59 =COUPDAYBS(M4,M5,2,1)
181 =COUPDAYS(M4,M5,2,1)
0.692679558 =(M12/M13)*M6*100/2
96.871 =+M11+M14
4.419%
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
B
C
D
E
F
G
YIELD TO MAURITY (YTM), YIELD TO CALL (YTC), YIELD TO WORSE (YTW) and
YTM
1/16/2017
Tuesday, November 13, 2018
Issuance Date =
Trading Date =
Settlement Date (T+3)
Friday, November 16, 2018
Maturity Date / Call Date
1/16/2027
Coupon Rate
8.00%
Market Price
98.50
Redemption (Final payment % of Par)
100.00
Frequency (payments per year)
2
Call Provision
YTM=
8.253%
YTC=
YTW=
8.253%
CY=
$1,000
$40
10 Years
Face Value
Coupon Payment $
Years (Term)
B
C
D
E
F
G
PRICE, ANNUAL DURATION AND CONVEXITY
Face Value =
Coup. Rate=
Int.Rate =
Frequency =
Time until
Payments
1
2
3
4
5
6
7
8
9
10
1,000
8.00%
10.00%
1
CF
80
80
80
80
80
80
80
80
80
1,080.00
PV of CF
72.727
66.116
60.105
54.641
49.674
45.158
41.053
37.321
33.928
416.387
%
Weight
8.29%
7.54%
6.85%
6.23%
5.66%
5.15%
4.68%
4.25%
3.87%
47.47%
100.00%
Duration
0.0829
0.1508
0.2056
0.2492
0.2832
0.3089
0.3276
0.3404
0.3481
4.7473
93
94
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
B
877.109
C
D
Duration=
E
7.0439
F
G
MACAULAY SEMI-ANNUAL DURATION AND CONVEXITY
Sensitivity to interest rate movements
Face Value
Coupon Rate
Life in Years
Yield
Frequency
Bond Price
1,000
8.00%
10
10.00%
2
$875.38
Macaulay Duration
Modified Duration
Convexity
Period
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
135
137
Price=
B
2
6.84
6.51
51.47
Cash
Flow
PV Cash
Flow
Weighted
Duration
Calc
($875.38)
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
1,040.00
38.10
36.28
34.55
32.91
31.34
29.85
28.43
27.07
25.78
24.56
23.39
22.27
21.21
20.20
19.24
18.32
17.45
16.62
15.83
391.97
4.352%
4.145%
3.947%
3.759%
3.580%
3.410%
3.247%
3.093%
2.946%
2.805%
2.672%
2.544%
2.423%
2.308%
2.198%
2.093%
1.994%
1.899%
1.808%
44.777%
100.000%
0.04352
0.08289
0.11842
0.15037
0.17901
0.20459
0.22732
0.24742
0.26510
0.28052
0.29388
0.30533
0.31503
0.32310
0.32970
0.33493
0.33892
0.34177
0.34357
8.95533
13.68074
PRICE
875.38
DURATION
6.84037
C
D
E
F
G
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
177
178
179
180
181
182
BOND PRICING
Par/Face Value
Coupon % =
Maturity/Term =
$ 1,000.00
8.00%
20 yrs
Semi-Annual Coupon =
Semi-Annual Payment =
Semi-Annual # Paymants =
Present Value of Coupon Pmts=
Present Value of Principal Pmt=
Total
$791.71 =PV(B4/2,G5,-G4)
$208.29 =PV(B4/2,G5,0,-B3,0)
$1,000.00
Net Present Value
$1,000.00
$0.00
$1,000.00
Long-Form
Period
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
$
4.00%
40.00
40
Coupon
Payment
Principal
Payment
Total
Payment
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
-
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
(1,000.00)
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
183
184
185
186
187
188
189
190
191
192
193
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
32
33
34
35
36
37
38
39
40
$
40.00
$
40.00
$
40.00
$
40.00
$
40.00
$
40.00
$
40.00
$
40.00
$ 1,040.00
$
$
$
$
$
$
$
$
$
-
IRR =
B
C
$
$
$
$
$
$
$
$
$
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
1,040.00
4.00%
D
E
F
G
229
230
H
I
J
K
L
M
N
J
K
L
M
N
Thursday, January 17, 2019
$37.50
1/31
2/28
H
3/15/2015
1/15/2025
4.250%
96.179
100
2
4.740%
I
H
I
J
K
L
M
N
M
N
D TO WORSE (YTW) and CURRENT YIELD (CY)
YTC1
YTC2
YTC3
YTC4
YTC5
1/16/2017 1/16/2017 1/16/2017 1/16/2017 1/16/2017
11/13/2018 11/13/2018 11/13/2018 11/13/2018 11/13/2018
11/16/2018
1/16/2018
8.00%
98.50
105.00
2
105.00
NA
11/16/2018
1/16/2019
8.00%
98.50
104.00
2
104.00
11/16/2018
1/16/2020
8.00%
98.50
103.00
2
103.00
11/16/2018
1/16/2021
8.00%
98.50
102.00
2
102.00
11/16/2018
1/16/2021
8.00%
98.50
101.00
2
101.00
40.527%
11.863%
9.625%
9.196%
I
J
K
L
8.1218%
H
N
t + t^2
(t+t^2) x PV(CF)
2
6
12
20
30
42
56
72
90
110
145.455
396.694
721.262
1092.822
1490.211
1896.632
2298.948
2687.083
3053.503
45802.543
59585.153
DMac =
C=
CFt
 (1 + i )
t
t =1
1
(1 + i)2
t
VB



N

t =1
(
CFt
t2 + t
t
(1 + i)
VB

)

H
Convexity =
56.143
I
J
K
L
IRR=
10.0000%
If Yield Changes By
Bond Price Will Change By
1.00%
-54.63
Modified Duration Predicts
Convexity Adjustment
Total Predicted Change
-57.03
2.25
-54.78
Actual New Price
Predicted New Price
Difference
2.000
76.19
6.000
217.69
12.000
414.64
20.000
658.16
30.000
940.23
42.000
1,253.64
56.000
1,591.93
72.000
1,949.30
90.000
2,320.59
110.000
2,701.22
132.000
3,087.11
156.000
3,474.67
182.000
3,860.74
210.000
4,242.57
240.000
4,617.76
272.000
4,984.25
306.000
5,340.27
342.000
5,684.32
380.000
6,015.16
420.000 164,625.33
218,055.76
H
I
N
-6.24%
$820.74
$820.60
($0.14)
Convexity
Factor years
Calc
CONVEXITY
M
N
DMac =
C=
CFt
 (1 + i ) t
t
t =1
VB
N
1 
CFt 2

2
t t +t
(1 + i)  t=1 (1 + i)

(
VB
51.47
J
K
L
M
N



)
YIELD TO MATURITY
every 6 mnts
pmts
Settlement Date=
Maturity Date=
Coupon Rate=
Bond Pricing=
Redemption Value=
Coupon pmts per yr=
Yield to Maturity=
1/1/2000
1/1/2010
8.000%
110
100
2
6.617%
Long-Form
Period
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
IRR =
Coupon
Payment
Principal
Payment
Total
Payment
$ (1,100.00)
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
40.00
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$ 1,000.00
$
40.00
$
40.00
$
40.00
$
40.00
$
40.00
$
40.00
$
40.00
$
40.00
$
40.00
$
40.00
$
40.00
$
40.00
$
40.00
$
40.00
$
40.00
$
40.00
$
40.00
$
40.00
$
40.00
$ 1,040.00
3.3085%
6.617%
H
I
J
K
L
M
N
DURATIO
DURATION AND CONVEXITY FORMULAS
4. ADVANCED OPTION STRATEGIES- Bear Call Spreads
CALLS
FB
PUTS
Exercise Price
(X)
MARCH
APRIL
MAY
MARCH
APRIL
MAY
150
20.00
21.50
23.00
3.00
3.50
4.45
155
15.50
16.25
17.75
4.10
4.90
5.90
160
12.50
12.85
13.50
5.30
6.00
6.80
165
8.10
9.00
10.65
7.00
8.00
9.20
170
5.20
6.30
8.50
9.40
10.75
12.45
175
3.25
4.25
5.75
13.00
14.30
14.20
180
2.50
3.40
4.45
15.00
16.10
17.75
Bear Call Strategy: Buy the high Exercise Call Price and sell the low Exercise Call Price at the same expiration date (
Action Example: Buy the April 175 Calls -pay $4.25 premium
Sell the April 165 Calls - receive $9.00 premium
INPUT
High X
p1
Low X
p2
STRATEGY
Buy
Exercise
Call
(X1)
Premium
Paid
Per Share
(p1)
Sell
Exercise
Call
(X2)
Premium
Received
Per Share
(p2)
BuyHigh and Sell Low Call
BuyHigh and Sell Low Call
BuyHigh and Sell Low Call
BuyHigh and Sell Low Call
BuyHigh and Sell Low Call
BuyHigh and Sell Low Call
BuyHigh and Sell Low Call
BuyHigh and Sell Low Call
$ 175.00
$ 175.00
$ 175.00
$ 175.00
$ 175.00
$ 175.00
$ 175.00
$ 175.00
$
$
$
$
$
$
$
$
(4.25)
(4.25)
(4.25)
(4.25)
(4.25)
(4.25)
(4.25)
(4.25)
$
$
$
$
$
$
$
$
165.00
165.00
165.00
165.00
165.00
165.00
165.00
165.00
$
$
$
$
$
$
$
$
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
p
Net
Premium
Received
Per Share
$
$
$
$
$
$
$
$
4.75
4.75
4.75
4.75
4.75
4.75
4.75
4.75
Current Price FaceBook (FB) So =
$163.00
(Feb)
Bear Call Spreads FB April 165/175
$6.00
Profit
BE $169.75
$4.00
$2.00
Payoff
$$(2.00)
$(4.00)
$ 130.00 $ 140.00 $ 150.00 $ 160.00 $ 169.75 $ 170.00 $ 180.00 $ 190.00
-10
-8
-6
-4
-2
0
2
4
$(6.00)
$(8.00)
$(10.00)
$(12.00)
rice at the same expiration date (Vertical Spread)
OUTPUT
S
S - X1 + X2
Market
Price
Stock Price
(S)
Net
Payoff
$ 130.00
$ 140.00
$ 150.00
$ 160.00
$ 169.75
$ 170.00
$ 180.00
$ 190.00
$ $ $ $ $ (4.75)
$ (5.00)
$ (10.00)
$ (10.00)
Net
Profit
$
$
$
$
$
$
$
$
Maximum
Loss
4.75
4.75
4.75
4.75
(0.25) $
(5.25) $
(5.25) $
Maximum
Profit
$
$
$
$
4.75
4.75
4.75
4.75
Breakeven
(5.25)
(5.25)
(5.25)
Figure 13.10
-10
-8
-6
-4
-2
0
2
4
$ 130.00
$ 140.00
$ 150.00
$ 160.00
$ 169.75
$ 170.00
$ 180.00
$ 190.00
Payoff
$
$
$
$
$ (4.75)
$ (5.00)
$ (10.00)
$ (10.00)
Profit
$ 4.75
$ 4.75
$ 4.75
$ 4.75
$
$ (0.25)
$ (5.25)
$ (5.25)
5. ADVANCED OPTION STRATEGIES - Long Butterfly Call Spreads
CALLS
FB
PUTS
Exercise Price
(X)
MARCH
APRIL
MAY
MARCH
APRIL
MAY
150
20.00
21.50
23.00
3.00
3.50
4.45
155
15.50
16.25
17.75
4.10
4.90
5.90
160
12.50
12.85
13.50
5.30
6.00
6.80
165
8.10
9.00
10.65
7.00
8.00
9.20
170
5.20
6.30
8.50
9.40
10.75
12.45
175
3.25
4.25
5.75
13.00
14.30
14.20
180
2.50
3.40
4.45
15.00
16.10
17.75
Long Butterfly Call Strategy: Buy the Low Exercise Call Price, Buy the High Exercise Price and sell the average Call Exerci
Action Example: Buy the May Call 150 -pay $23 premium
Buy the May 180 Calls - pay $4.45 premium
Sell the May 165 Calls - receive $10.65 premium
Sell the May 165 Calls - receive $10.65 premium
INPUT
STRATEGY
Buy Low, High
Buy Low, High
Buy Low, High
Buy Low, High
Buy Low, High
Buy Low, High
Buy Low, High
Buy Low, High
Buy Low, High
Buy Low, High
Buy Low, High
Buy Low, High
Buy Low, High
and Sell Avg Call
and Sell Avg Call
and Sell Avg Call
and Sell Avg Call
and Sell Avg Call
and Sell Avg Call
and Sell Avg Call
and Sell Avg Call
and Sell Avg Call
and Sell Avg Call
and Sell Avg Call
and Sell Avg Call
and Sell Avg Call
Low X1
p1
High X2
p2
2 x Avg X3
2 x p3
Buy
Exercise
Call
(X1)
Premium
Paid
Per Share
(p1)
Buy
Exercise
Call
(X2)
Premium
Paid
Per Share
(p2)
Sell
Exercise
Call
(X2)
Premium
Received
Per Share
(p3)
$ 150.00
$ 150.00
$ 150.00
$ 150.00
$ 150.00
$ 150.00
$ 150.00
$ 150.00
$ 150.00
$ 150.00
$ 150.00
$ 150.00
$ 150.00
$
$
$
$
$
$
$
$
$
$
$
$
$
(23.00)
(23.00)
(23.00)
(23.00)
(23.00)
(23.00)
(23.00)
(23.00)
(23.00)
(23.00)
(23.00)
(23.00)
(23.00)
$
$
$
$
$
$
$
$
$
$
$
$
$
180.00
180.00
180.00
180.00
180.00
180.00
180.00
180.00
180.00
180.00
180.00
180.00
180.00
$
$
$
$
$
$
$
$
$
$
$
$
$
(4.45)
(4.45)
(4.45)
(4.45)
(4.45)
(4.45)
(4.45)
(4.45)
(4.45)
(4.45)
(4.45)
(4.45)
(4.45)
$
$
$
$
$
$
$
$
$
$
$
$
$
165.00
165.00
165.00
165.00
165.00
165.00
165.00
165.00
165.00
165.00
165.00
165.00
165.00
$
$
$
$
$
$
$
$
$
$
$
$
$
21.30
21.30
21.30
21.30
21.30
21.30
21.30
21.30
21.30
21.30
21.30
21.30
21.30
Current Price FaceBook (FB) So =
$163.00
(Feb)
Long Butterfly Call Spread FB May 150/180
$20.00
BE $156.15
BE $173.85
$15.00
$10.00
$5.00
Payoff
Profit
$$(5.00)
$
$
$
$
$
$
$
$
$
$
$
145.00 150.00 155.00 156.15 160.00 165.00 170.00 173.85 175.00 180.00 185.00
-10
-8
-6
-4
-2
0
2
4
6
8
10
$(10.00)
d sell the average Call Exercise Price twice at the same expiration date (Vertical Spread)
OUTPUT
p
S
Net
Premium
Paid
Per Share
Market
Price
Stock
Price
(S)
$ 140.00
$ 145.00
$ 150.00
$ 155.00
$ 156.15
$ 160.00
$ 165.00
$ 170.00
$ 173.85
$ 175.00
$ 180.00
$ 185.00
$ 190.00
$
$
$
$
$
$
$
$
$
$
$
$
$
(6.15)
(6.15)
(6.15)
(6.15)
(6.15)
(6.15)
(6.15)
(6.15)
(6.15)
(6.15)
(6.15)
(6.15)
(6.15)
S - X1 + X2
Net
Profit
Net Payoff
BE
BE
$
$
$
$
$
$
$
$
$
$
$
$
$ 0.00
5.00
6.15
10.00
15.00
10.00
6.15
5.00
-
$
$
$
$
$
$
$
$
$
$
$
$
$
Maximum Maximum
Profit
Loss
(6.15)
(6.15)
(6.15)
(1.15)
0.00
3.85
8.85 $
3.85
0.00
(1.15)
(6.15)
(6.15)
(6.15)
$
$
$
(6.15)
(6.15)
(6.15)
$
$
$
(6.15)
(6.15)
(6.15)
8.85
Figure 13.12
-10
-8
-6
-4
-2
0
2
4
6
8
10
$ 145.00
$ 150.00
$ 155.00
$ 156.15
$ 160.00
$ 165.00
$ 170.00
$ 173.85
$ 175.00
$ 180.00
$ 185.00
Payoff
$
$
$ 5.00
$ 6.15
$ 10.00
$ 15.00
$ 10.00
$ 6.15
$ 5.00
$
$
-
Profit
$ (6.15)
$ (6.15)
$ (1.15)
$ 0.00
$ 3.85
$ 8.85
$ 3.85
$ 0.00
$ (1.15)
$ (6.15)
$ (6.15)
ENTER FIRST NAME
ENTER LAST NAME
First Name:
Last Name:
PLEASE DO NOT INSERT LINES OR COLUMNS AND DO NOT COPY AND PASTE FORMULAS FROM OTHER SPREADSH
SECTION I – STOCKS (20 POINTS)
QUESTION 1 (10 points):
You obtain $10,000 margin loan with 5% interest to buy 120 shares of IBM $240. A year later you sold all the shares at $26
received a total dividend of $500. What is your $ profit and return of your investment
$ Profit =
HPR% =
QUESTION 2 (10 points):
Usingthe information below calculat the Current stock price and stock price value using the DDM valuation methd.
INPUT
Trading EBITDA Multiple
Book Value of Equity
Shares Outstanding
Total Debt
Total Liabilities
Total Assets
Cash
EBITDA
Dividends per share
Risk Free Rate
Market Return
Beta
Expected Dividend Growth
10.000X
1,500
130
1,300
1,500
3,000
250
550
$
2.50
1.25%
10.00%
1.650X
8.00%
million
million
million
million
million
million
million
per share
Trading Stock Price =
Stock Value Price based on Dividend Discount Model (assume next year's Dividend in your calculation) =
SECTION II– BONDS (30 POINTS)
Question 3 (8 points)
Calculate the Invoice Price of the Elm Corp.'s Corporate Bond given the following information
INPUT
Face Value
Trading Price
Trading Date
Coupon Rate
Coupon Payment Days
Frequency =
1,000
99.000
Wednesday, January 16
7.25%
Mar 31, Sep 30
2
Price =
Invoice Price =
Current Yield =
Question 4 (14 points)
Given the following data, calculate the YTM, all 4 years of YTC, YTW and Current Yield:
INPUT
Issuance Date=
Settlement Date=
Maturity Date=
Current Market Price=
Coupon Rate=
Redemption value at Maturity %=
Coupon Pmts per year=
10/15/2017
11/1/2018
10/15/2027
98
8.000%
100
2
YTM =
Call Price Provision
Year
INPUT
(I.E. ENTER
9/15/2018)
Call Price
One year from Issuance Date=
104
Two years from Issuance Date=
103
Three years from Issuance Date=
102
Dates
Four years from Issuance Date=
101
YTW =
Current Yield =
Question 5 (10 points)
Given the following data, calculate the Price, Duration and Convexity of the Bond:
INPUT
Face Value
Coupon Rate
Yield
Remaining Years to Maturity
Redemption Price
Frequency
CALCULATIONS
Time until Maturity
Payments
1
2
3
4
5
6
7
8
9
10
1,000
8.000%
9.250%
3
100
2
Payment
40.00
40.00
40.00
40.00
40.00
1,040.00
PV
Pmt
38.23
36.54
34.93
33.38
31.91
792.90
%
Weight
0.0395
0.0378
0.0361
0.0345
0.033
0.8192
Duration
(Years)
Factor
Years
Convexity
Calc
Total=
Price=
Duration=
Convexity=
SECTION III– OPTIONS (50 POINTS)
Question 6 (10 points)
Calculate the Payoff, Profit/Loss, BE of the stock and HPR% given the information below (1 point per option answe
Exercise
Action
Option
Premium Stock Price
Payoff
Profit /Loss
Price
Buy
Call
100.00
8.60
125.00
Buy
Call
105.00
15.45
105.00
Buy
Put
110.00
13.25
102.00
Buy
Put
105.00
15.25
105.00
Sell
Put
115.00
16.05
115.00
Sell
Put
120.00
12.50
120.00
Sell
Call
120.00
4.10
115.00
Sell
Call
110.00
11.20
135.00
Sell
Straddle
125.00
18.70
145.00
Buy
Straddle
105.00
19.20
135.00
Question 7 (10 points)
Calculate the Payoff and Profit/Loss given the information below (2 points each):
CALL
Exercise
Price
Nov 2020
100
8.40
11.25
105
5.90
110
PUT
Dec 2020 Jan 2021
Nov 2020
Dec 2020
Jan 2021
17.60
2.30
6.15
11.00
9.90
15.25
3.70
8.90
15.05
3.95
7.55
11.00
6.52
13.05
17.95
115
3.00
5.65
8.90
8.70
15.85
22.90
120
2.55
3.90
7.05
12.30
19.95
28.55
125
2.25
3.45
5.25
16.05
24.85
32.45
Stock
Price
Total
Payoff
Premiums
Action
Option
Buy
Bull Call Nov Spread
Buy
Bull Put Dec Spread
Buy
Bear Put Jan Spread
Long
Butterfly Call Jan Spread
Short
Butterfly Call Nov Spread
Exercise
(Calc the
Prices
net amount)
100
110
115
125
120
125
100
120
105
115
120
90
90
112
130
Question 8 (10 points)
Consider a stock worth $65 that can go up or down by 25% per period. The risk free rate is 5%. And exercise price
Pricing Methods (both methods - Method 1 (6 steps) and Method 2 (the probability concept) to calculate the call pre
METHOD 1 (enter the answer of each step)
Step 1 =
Step 2 =
Step 3 =
Step 4 =
Step 5 =
Premium =
METHOD 2
Premium
Question 9 (10 points)
Consider the following binomial option pricing problem. This option has two periods to go before expiring. Its stock
is $75. The risk-free rate is 4%, the value of u is 1.15 and the value of the d is 0.7. The stock pays dividend at the e
2%. Construct the 2-period Binomial Option Tree model and find the value of both the call and put premiums
Call Premium =
Put Premium =
Question 10 (10 points)
ELEM Corporation's stock price is currently trading at $85. The investor is considering of buying the 6 month stradd
risk-free rate is 3.5%, the Standard Deviation is 0.25. The stock pays dividend at the end of the first period at the ra
the Put and the Straddle options premiums using the Black-Scholes Option Pricing Model.
d1 =
d2 =
N(d1) =
N(d2) =
Call Premium =
Put Premium =
Straddle Prem. =
LAST NAME
ENTER 8-DIGIT STUDENT ID
Student ID
Student#
OM OTHER SPREADSHEETS
20 POINTS)
old all the shares at $265. During the hold period you
ANSWERS
aluation methd.
Matching Algorithm #
15778
ANSWERS
ock Price =
30 POINTS)
ANSWERS
ANSWERS
YTC
(50 POINTS)
point per option answer - no partial credit
BE Stock
High
Low
High
Low
Total
Profit
5%. And exercise price is $62. Use one Binomial Option
o calculate the call premium
fore expiring. Its stock price is $80 and its exercise price
k pays dividend at the end of the first period at the rate of
d put premiums
ANSWERS
ing the 6 month straddle with exercise price of $85. The
he first period at the rate of 3%. Calculate both the Call,
ANSWERS
Points
Score
100
100
4
4
4
4
4
4
2
2
2
2
2
2
2
2
4
4
4
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
1
1
1
1
1
2
2
4
4
1
1
1
1
2
2
1
78
157-
Question 1
120
240
265
500
65
Question 8
25.00
62
Question 9
80
75
4
1.15
0.7
2
Question 10 0.25
0.75
3.5
85
85
3
Question 13
100
230
500
23
Purchase answer to see full
attachment