+1(978)310-4246 credencewriters@gmail.com
Select Page

Semester One Examinations, 2022
PHYS1001
PHYS1001: Useful formulae and numerical values
Mathematics
A< # + C< + D = 0 Solution: < = Ã¢Ë†â€™C Ã‚Â± Ã¢Ë†Å¡% ! &'() #( Trigonometry DEF # - + FG># – = 1
sin(J Ã‚Â± K) = sin J cos K Ã‚Â± cos J sin K
cos(J Ã‚Â± K) = cos J cos K Ã¢Ë†â€œ sin J sin K
JÃ‚Â±K
JÃ¢Ë†â€œK
sin J Ã‚Â± sin K = 2 sin M
P
N cos O
2
2
J+K
JÃ¢Ë†â€™K
cos J + cos K = 2 cos M
N cos M
N
2
2
J+K
JÃ¢Ë†â€™K
cos J Ã¢Ë†â€™ cos K = 2 sin M
N sin M
N
2
2
Binomial expansion
(1 + < + >(> Ã¢Ë†â€™ 1) #
< +Ã¢â€¹Â¯ 2! Calculus d n x = n x n -1 dx x n +1 n x dx = ÃƒÂ² n +1 1 ÃƒÂ² x dx = ln ( x ) d sin ( ax ) = a cos ( ax ) dx d cos ( ax ) = - a sin ( ax ) dx Vectors UÃ¢Æ’â€”= JK cos V JÃ¢Æ’â€”Ã¢Ë†â„¢K UÃ¢Æ’â€” = JK sin V >UÃ¢Æ’â€”
JÃ¢Æ’â€”Ãƒâ€”K
UÃ¢Æ’â€”.
where >UÃ¢Æ’â€” is a unit vector normal to both JÃ¢Æ’â€” and K
Page 9 of 14
Semester One Examinations, 2022
PHYS1001
Vectors Ã¢â‚¬â€œ continued
If XÃ¢Æ’â€”, YÃ¢Æ’â€”, and ZUÃ¢Æ’â€” are mutually perpendicular unit vectors then
UÃ¢Æ’â€” =Z
UÃ¢Æ’â€” Ã¢Ë†â„¢XÃ¢Æ’â€”= 0 and XÃ¢Æ’â€”Ãƒâ€”XÃ¢Æ’â€”=YÃ¢Æ’â€”Ãƒâ€”YÃ¢Æ’â€”=Z
UÃ¢Æ’â€” Ãƒâ€”ZUÃ¢Æ’â€”= 0 and XÃ¢Æ’â€”Ãƒâ€”YÃ¢Æ’â€”=Z
UÃ¢Æ’â€” , YÃ¢Æ’â€”Ãƒâ€”Z
UÃ¢Æ’â€” =XÃ¢Æ’â€”, Z
UÃ¢Æ’â€” Ãƒâ€”XÃ¢Æ’â€”=YÃ¢Æ’â€”.
XÃ¢Æ’â€”Ã¢Ë†â„¢XÃ¢Æ’â€”=YÃ¢Æ’â€”Ã¢Ë†â„¢YÃ¢Æ’â€”=ZUÃ¢Æ’â€”Ã¢Ë†â„¢ZUÃ¢Æ’â€”= 1 and XÃ¢Æ’â€”Ã¢Ë†â„¢YÃ¢Æ’â€”=YÃ¢Æ’â€”Ã¢Ë†â„¢Z
XÃ¢Æ’â€”
Ã¢Æ’â€”
UÃ¢Æ’â€”
JÃƒâ€”K= [J+
K+
Kinematics and Dynamics
vs = ds / dt
as = dvs / dt
w = dq / dt
a = dw / dt
tf
tf
s f = si + ÃƒÂ² vs dt
ti
tf
YÃ¢Æ’â€”
J,
K,
s
r
vt = Ãâ€° r
ÃŽÂ¸=
q f = qi + ÃƒÂ² w dt
ti
tf
v f = vi + ÃƒÂ² as dt
w f = wi + ÃƒÂ² a s dt
v fs = vis + as Dt
w f = wi + a Dt
1
s f = si + vis Dt + as (Dt ) 2
2
2
2
v fs = vis + 2as Ds
1
q f = qi + wi Dt + a (Dt ) 2
2
2
2
w f = wi + 2a Dq
ti
ZUÃ¢Æ’â€”
J- [
K-
at = ÃŽÂ± r
ti
vt2
ar =
r
2Ãâ‚¬ r 2Ãâ‚¬
T=
=
v
Ãâ€°
Impulse, Momentum, Energy, Work
Ã¯ÂÂ²
Ã¯ÂÂ²
Pf = Pi
Ã¯ÂÂ²
Ã¯ÂÂ²
F = d p / dt
tf
ÃŽâ€Esys = ÃŽâ€K + ÃŽâ€U + ÃŽâ€Eth = Wext
K f +U f + ÃŽâ€Eth = K i +U i +Wext
J x = Ã¢Ë†Â« Fx (t)dt
ÃŽâ€K = Wnet = Wc +Wdiss +Wext
ÃŽâ€px = J x
W = Ã¢Ë†Â« Fs ds
K f +U f = K i +U i
ÃŽâ€Eth = f k ÃŽâ€s
Ã¯ÂÂ² Ã¯ÂÂ²
W = F Ã¢â‚¬Â¢ ÃŽâ€r
ti
1
K = mv 2
2
U g = mgy
1
U s = k(ÃŽâ€s) 2
2
Fs = Ã¢Ë†â€™kÃŽâ€s
sf
si
Fs = Ã¢Ë†â€™dU / ds
P=
dEsys
Ã¯ÂÂ²dt Ã¯ÂÂ²
P = F Ã¢â‚¬Â¢v
Page 10 of 14
Ã¯ÂÂ²
Ã¯ÂÂ² Fnet
a=
m
FG = mg
f s,max = Ã‚Âµ s n
f k = Ã‚Âµk n
f r = Ã‚Âµr n
DÃ¢â€°Ë†
1 2
Av
4
Semester One Examinations, 2022
PHYS1001
Rigid Body Rotation
ÃŽÂ±=
Ã¯ÂÂ²
Ã¯ÂÂ²
L = IÃâ€°
Ã¯ÂÂ²
dL
= Ãâ€ž net
dt
1
xcm =
Ã¢Ë†Â« x dm
M
1
ycm =
Ã¢Ë†Â« y dm
M
I = Ã¢Ë†â€˜ mi ri 2 = Ã¢Ë†Â« r 2 dm
Ãâ€ž net
I
1
1
2
E = K rot + K cm +U g = IÃâ€° 2 + Mvcm
+ Mgycm
2
2
! ! !
Ãâ€ž =rÃƒâ€”F
Ãâ€ž = rF sin ÃŽÂ¸ = rFt = dF
vcm = RÃâ€°
I = I cm + Md 2
i
Moments of Inertia
1
ML2
12
1
I = ML2
3
1
I = Ma 2
12
1
I = Ma 2
3
I=
1
MR 2
2
I = MR 2
2
I = MR 2
5
2
I = MR 2
3
I=
Oscillations
( Fnet ) s = – ks
w=
k
m
T = 2p
m
k
x(t ) = A cos(wt + f0 )
ÃƒÂ¦ mg ÃƒÂ¶
( Fnet )t = – ÃƒÂ§
ÃƒÂ·s
ÃƒÂ¨ L ÃƒÂ¸
w=
g
L
T
= 2p
vx (t ) = -vmax sin(wt + f0 )
L
g
1 2 1 2 1
1
mvx + kx = m(vmax ) 2 = kA2
2
2
2
2
– t /t
E = E0 e
E=
f = 1/ T
w = 2p f = 2p / T
ax = -w 2 x
vmax = w A
x(t ) = Ae – bt / 2 m cos(wt + f0 )
t = m/b
Page 11 of 14
Semester One Examinations, 2022
PHYS1001
Fluids and Elasticity
r = m /V
p=F/A
p = p0 + r gh
v1 A1 = v2 A2
1
1
p1 + r v12 + r gy1 = p2 + r v22 + r gy2
2
2
Thermodynamics
ÃŽâ€Eth = W + Q
pV = nRT
Vf
pV = Nk BT
W =Ã¢Ë†â€™Ã¢Ë†Â«
p2V2 p1V1
=
T2
T1
ÃŽÂ³ = C P / CV
M
m
N M (in grams)
n=
=
NA
M mol
Q = Ã‚Â±ML
Q = Mc ÃŽâ€T
Q = nC ÃŽâ€T
Q / ÃŽâ€t = (kA / L) ÃŽâ€T
Vi
p dV
C P = CV + R
N=
Number density = N /V
Q / ÃŽâ€t = eÃÆ’ AT 4
9
TF = TC + 32o
5
TK = TC + 273
pV ÃŽÂ³ = const
TV ÃŽÂ³ Ã¢Ë†â€™1 = const
1N
2N
2
p=
mvrms
=
ÃŽÂµ
3V
3 V avg
3
ÃŽÂµavg = k BT
2
3
3
Eth = Nk BT = nRT (Monatomic gas)
2
2
5
5
Eth = Nk BT = nRT
(Diatomic gas)
2
2
Eth = 3Nk BT = 3nRT (Elemental solid)
vrms = (v 2 )avg
TpÃŽÂ³ /(ÃŽÂ³ Ã¢Ë†â€™1) = const
W = Ã¢Ë†â€™nRT ln(V f /Vi )
ÃŽÂ·=
Wout
QH
T
ÃŽÂ· Ã¢â€°Â¤ 1Ã¢Ë†â€™ C
TH
K=
QC
Win
KÃ¢â€°Â¤
TC
TH Ã¢Ë†â€™ TC
Ws = Ã¢Ë†Â« p dV
Page 12 of 14
F
DL
=Y
A
L
DV
p = -B
V
Semester One Examinations, 2022
PHYS1001
Numerical Values
= 9.80 m s&#
^ = 6.672 Ãƒâ€” 10&.. m/ kg &. s&# or N m# kg &#
Earth Mass = 6.0 Ãƒâ€” 10#’ kg
Earth Radius = 6.4 Ãƒâ€” 100 m
Solar Mass = 2.0 Ãƒâ€” 10/1 kg
Solar Radius = 7.0 Ãƒâ€” 102 m
Earth Ã¢Ë†â€™ Sun mean distance = 1.5 Ãƒâ€” 10.. m
one (metric) tonne = 1.0 Ãƒâ€” 10/ kg
Z! = 1.3801 Ãƒâ€” 10&#/ J K &.
p = 5.67 Ãƒâ€” 10&2 W m&# K &’
c = 4190 J kg &. K &. (for water)
r3 = 3.33 Ãƒâ€” 104 J kg &. (for water)
r5 = 22.6 Ãƒâ€” 104 J kg &. (for water)
r5 = 2.00 Ãƒâ€” 104 J kg &. (for carbon dioxide, dry-ice sublimation)
s = 1.6606 Ãƒâ€” 10&#6 kg
t7 = 6.022 Ãƒâ€” 10#/ particles mol&.
v89: (H) = 0.001 kg mol&.
x = 8.314 J mol&. K &.
?” =
/
#
x (monatomic gas)
4
?” = # x (diatomic gas)
y = 1.67 (monatomic gas)
y = 1.40 (diatomic gas)
1 atm = 101.3 kPa = 1.013 Ãƒâ€” 104 Pa
Uncertainty Analysis
Summary of rules for combining uncertainties for dependent measurements
If / = < + { + | + Ã¢â€¹Â¯ or / = < Ã¢Ë†â€™ { Ã¢Ë†â€™ | Ã¢Ë†â€™ Ã¢â€¹Â¯ then ÃŽâ€/ = ÃŽâ€< + ÃŽâ€{ + ÃŽâ€z + Ã¢â€¹Â¯. If / = < Ãƒâ€” { Ãƒâ€” | Ãƒâ€” Ã¢â‚¬Â¦ or / =
attachment

User generated content is uploaded by users for the purposes of learning and should be used following Studypool’s honor code & terms of service.

View attached explana…

Review
Review

Anonymous
This is great! Exactly what I wanted.

Studypool
4.7
Trustpilot
4.5
Sitejabber
4.4

## Why Choose Us

• 100% non-plagiarized Papers
• Affordable Prices
• Any Paper, Urgency, and Subject
• Will complete your papers in 6 hours
• On-time Delivery
• Money-back and Privacy guarantees
• Unlimited Amendments upon request
• Satisfaction guarantee

## How It Works

• Click on the “Place Your Order” tab at the top menu or “Order Now” icon at the bottom and a new page will appear with an order form to be filled.
• Fill in your paper’s requirements in the "PAPER DETAILS" section.
• ` `