+1(978)310-4246 credencewriters@gmail.com
  

Semester One Examinations, 2022
PHYS1001
PHYS1001: Useful formulae and numerical values
Mathematics
Quadratic eqn:
A< # + C< + D = 0 Solution: < = −C ± √% ! &'() #( Trigonometry DEF # - + FG># – = 1
sin(J ± K) = sin J cos K ± cos J sin K
cos(J ± K) = cos J cos K ∓ sin J sin K
J±K
J∓K
sin J ± sin K = 2 sin M
P
N cos O
2
2
J+K
J−K
cos J + cos K = 2 cos M
N cos M
N
2
2
J+K
J−K
cos J − cos K = 2 sin M
N sin M
N
2
2
Binomial expansion
(1 + < + >(> − 1) #
< +⋯ 2! Calculus d n x = n x n -1 dx x n +1 n x dx = ò n +1 1 ò x dx = ln ( x ) d sin ( ax ) = a cos ( ax ) dx d cos ( ax ) = - a sin ( ax ) dx Vectors U⃗= JK cos V J⃗∙K U⃗ = JK sin V >U⃗
J⃗×K
U⃗.
where >U⃗ is a unit vector normal to both J⃗ and K
Page 9 of 14
Semester One Examinations, 2022
PHYS1001
Vectors – continued
If X⃗, Y⃗, and ZU⃗ are mutually perpendicular unit vectors then
U⃗ =Z
U⃗ ∙X⃗= 0 and X⃗×X⃗=Y⃗×Y⃗=Z
U⃗ ×ZU⃗= 0 and X⃗×Y⃗=Z
U⃗ , Y⃗×Z
U⃗ =X⃗, Z
U⃗ ×X⃗=Y⃗.
X⃗∙X⃗=Y⃗∙Y⃗=ZU⃗∙ZU⃗= 1 and X⃗∙Y⃗=Y⃗∙Z
X⃗
⃗
U⃗
J×K= [J+
K+
Kinematics and Dynamics
vs = ds / dt
as = dvs / dt
w = dq / dt
a = dw / dt
tf
tf
s f = si + ò vs dt
ti
tf
Y⃗
J,
K,
s
r
vt = ω r
θ=
q f = qi + ò w dt
ti
tf
v f = vi + ò as dt
w f = wi + ò a s dt
v fs = vis + as Dt
w f = wi + a Dt
1
s f = si + vis Dt + as (Dt ) 2
2
2
2
v fs = vis + 2as Ds
1
q f = qi + wi Dt + a (Dt ) 2
2
2
2
w f = wi + 2a Dq
ti
ZU⃗
J- [
K-
at = α r
ti
vt2
ar =
r
2Ï€ r 2Ï€
T=
=
v
ω
Impulse, Momentum, Energy, Work


Pf = Pi


F = d p / dt
tf
ΔEsys = ΔK + ΔU + ΔEth = Wext
K f +U f + ΔEth = K i +U i +Wext
J x = ∫ Fx (t)dt
ΔK = Wnet = Wc +Wdiss +Wext
Δpx = J x
W = ∫ Fs ds
K f +U f = K i +U i
ΔEth = f k Δs
 
W = F • Δr
ti
1
K = mv 2
2
U g = mgy
1
U s = k(Δs) 2
2
Fs = −kΔs
sf
si
Fs = −dU / ds
P=
dEsys
dt 
P = F •v
Page 10 of 14

 Fnet
a=
m
FG = mg
f s,max = µ s n
f k = µk n
f r = µr n
D≈
1 2
Av
4
Semester One Examinations, 2022
PHYS1001
Rigid Body Rotation
α=


L = Iω

dL
= Ï„ net
dt
1
xcm =
∫ x dm
M
1
ycm =
∫ y dm
M
I = ∑ mi ri 2 = ∫ r 2 dm
Ï„ net
I
1
1
2
E = K rot + K cm +U g = Iω 2 + Mvcm
+ Mgycm
2
2
! ! !
τ =r×F
τ = rF sin θ = rFt = dF
vcm = Rω
I = I cm + Md 2
i
Moments of Inertia
1
ML2
12
1
I = ML2
3
1
I = Ma 2
12
1
I = Ma 2
3
I=
Thin rod, about centre.
Thin rod, about end.
Plane or slab, about centre.
Plane or slab, about edge.
1
MR 2
2
I = MR 2
2
I = MR 2
5
2
I = MR 2
3
I=
Cylinder or disk, about centre.
Cylindrical hoop, about centre.
Solid sphere, about diameter.
Spherical shell, about diameter.
Oscillations
( Fnet ) s = – ks
w=
k
m
T = 2p
m
k
x(t ) = A cos(wt + f0 )
æ mg ö
( Fnet )t = – ç
÷s
è L ø
w=
g
L
T
= 2p
vx (t ) = -vmax sin(wt + f0 )
L
g
1 2 1 2 1
1
mvx + kx = m(vmax ) 2 = kA2
2
2
2
2
– t /t
E = E0 e
E=
f = 1/ T
w = 2p f = 2p / T
ax = -w 2 x
vmax = w A
x(t ) = Ae – bt / 2 m cos(wt + f0 )
t = m/b
Page 11 of 14
Semester One Examinations, 2022
PHYS1001
Fluids and Elasticity
r = m /V
p=F/A
p = p0 + r gh
v1 A1 = v2 A2
1
1
p1 + r v12 + r gy1 = p2 + r v22 + r gy2
2
2
Thermodynamics
ΔEth = W + Q
pV = nRT
Vf
pV = Nk BT
W =−∫
p2V2 p1V1
=
T2
T1
γ = C P / CV
M
m
N M (in grams)
n=
=
NA
M mol
Q = ±ML
Q = Mc ΔT
Q = nC ΔT
Q / Δt = (kA / L) ΔT
Vi
p dV
C P = CV + R
N=
Number density = N /V
Q / Δt = eσ AT 4
9
TF = TC + 32o
5
TK = TC + 273
pV γ = const
TV γ −1 = const
1N
2N
2
p=
mvrms
=
ε
3V
3 V avg
3
εavg = k BT
2
3
3
Eth = Nk BT = nRT (Monatomic gas)
2
2
5
5
Eth = Nk BT = nRT
(Diatomic gas)
2
2
Eth = 3Nk BT = 3nRT (Elemental solid)
vrms = (v 2 )avg
Tpγ /(γ −1) = const
W = −nRT ln(V f /Vi )
η=
Wout
QH
T
η ≤ 1− C
TH
K=
QC
Win
K≤
TC
TH − TC
Ws = ∫ p dV
Page 12 of 14
F
DL
=Y
A
L
DV
p = -B
V
Semester One Examinations, 2022
PHYS1001
Numerical Values
= 9.80 m s&#
^ = 6.672 × 10&.. m/ kg &. s&# or N m# kg &#
Earth Mass = 6.0 × 10#’ kg
Earth Radius = 6.4 × 100 m
Solar Mass = 2.0 × 10/1 kg
Solar Radius = 7.0 × 102 m
Earth − Sun mean distance = 1.5 × 10.. m
one (metric) tonne = 1.0 × 10/ kg
Z! = 1.3801 × 10&#/ J K &.
p = 5.67 × 10&2 W m&# K &’
c = 4190 J kg &. K &. (for water)
r3 = 3.33 × 104 J kg &. (for water)
r5 = 22.6 × 104 J kg &. (for water)
r5 = 2.00 × 104 J kg &. (for carbon dioxide, dry-ice sublimation)
s = 1.6606 × 10&#6 kg
t7 = 6.022 × 10#/ particles mol&.
v89: (H) = 0.001 kg mol&.
x = 8.314 J mol&. K &.
?” =
/
#
x (monatomic gas)
4
?” = # x (diatomic gas)
y = 1.67 (monatomic gas)
y = 1.40 (diatomic gas)
1 atm = 101.3 kPa = 1.013 × 104 Pa
Uncertainty Analysis
Summary of rules for combining uncertainties for dependent measurements
If / = < + { + | + ⋯ or / = < − { − | − ⋯ then Δ/ = Δ< + Δ{ + Δz + ⋯. If / = < × { × | × … or / =
Purchase answer to see full
attachment

User generated content is uploaded by users for the purposes of learning and should be used following Studypool’s honor code & terms of service.

Explanation & Answer

View attached explana…


Anonymous
This is great! Exactly what I wanted.

Studypool
4.7
Trustpilot
4.5
Sitejabber
4.4
Similar Content
Related Tags
















We offer the best custom paper writing services.  We have done this question before,  we can also do it for you.

Why Choose Us

How It Works

 
error: Content is protected !!