Description
A psychologist studied self-esteem scores and found the data set to be normally distributed with a mean of 60 and a standard deviation of 5.
Part A
**What raw score cuts off the bottom 33% of this distribution?
Steps:
Q1:
What is the
z-score
that cuts off the bottom 33% of this distribution?
Q2:
What is the
raw score
that cuts off the bottom 33% of this distribution?
Part B
**What percentage of the scores is between 65 and 70?
Steps:
Q3:
What is the
z-score
that corresponds to the raw score of 65?
Q4:
What is the
z-score
that corresponds to the raw score of 70?
Q5:
What
percentage
of the scores is between 65 and 70?
Part C:
**A raw score of 57.5 is associated with what percentile?
Steps:
Q6:
What is the
z-score
associated with a raw score of 57.5?
Q7:
A raw score of 57.5 is associated with what
percentile
?
Part D:
**What raw scores mark the middle 95% of this distribution?
Steps:
Q8:
What are the
z-scores
that mark the middle 95% of this distribution?
Q9:
What is the
raw score
below
the mean?
Q10:
What is the
raw score
above
the mean?
Part E:
**What is the median of this distribution?
Q11:
What is the
median
of this distribution?
The following 9 questions (Q12 to Q20) are conceptual questions based on Modules 3 and 4.
Q12:
In a
positively skewed
distribution, Alice scored the mean, Betty scored the median, and Claire scored the mode. Who had the
lowest
score?
Alice
Betty
Claire
All three scored approximately the same
Q13:
In a
normal distribution
, Alice scored the mean, Betty scored the median, and Claire scored the mode. Who had the
lowest
score?
Alice
Betty
Claire
All three scored approximately the same
Q14:
The z-distribution always has a mean of _____ and a standard deviation of _____.
1; 0
0; 0
0; 1
1;1
Q15:
A test score of 84 was transformed into a standard score of –1.5. If the standard deviation of test scores was 4, what is the mean of the test scores?
78
89
90 D. 88
Q16:
The standard deviation for the sample numbers 8, 9, and 10 is
–3.0
0.0
C..67 D. 1.0
Q17:
A university administrator randomly selected 10 freshmen and 10 seniors and asked them how satisfied they are with life at Ohio University on a 1 (not at all satisfied) to 9 (very satisfied) scale. The administrator’s date is below:
Mean Variance
Freshmen 3 10
Seniors 8 1
These results seem to indicate that:
freshmen agree more with each other about their life satisfaction than do seniors
seniors agree more with each other about their life satisfaction than do freshmen
all freshman tend to be satisfied with life
freshmen and seniors experience equal life satisfaction E. none of the above are accurate
Q18:
A sample of data has a standard deviation of 10. If you were to divide all the scores in the date set by a factor of two (2), what would the new standard deviation be?
10
5
2.5
none of the above
The following 2 questions (Q19 to Q20) are either “True†or “Falseâ€Â
Q19:
The variance for a set of data can be a negative value.
Q20:
The two
parameters
that completely characterize a standardized normal distribution are “μ†and Ã¢â‚¬Å“ÃÆ’â€Â.
Module 4: Submitted Homework Assignment
**Module 4 Submitted Homework Assignment is worth 20 points (5% of your grade)
Write answers for the following and submit them via email according to the schedule in the
course syllabus. Be sure your answers are contained in the body of your message. Do NOT send
them as attachments.
Send your answers to Module 4 to the instructor: mccartc1@ohio.edu
The questions are structured so that a single letter, word, or number will suffice. Computational
questions are arranged so that partial credit can be given for each step answered correctly.
Always use the following model to submit your answers to the questions.
EXAMPLE:
Your name:
Module Number:
Answers
Q1 C
Q2 B
Q3 A, etc.
If the question requires computation, do the calculations and then give the correct
values as follows:
(Always hold all decimal values through your computations, and round final
answers to at least two decimal places)!
Q4 7
Q5 4
Q6 22, etc.
If the question is a fill in the blank, just put in the appropriate word(s) as follows:
Q7 statistics
Q8 dependent variable, etc.
Module 4 Questionsâ€â€Submit answers via email to mccartc1@ohio.edu according to above
instructions: (There are 20 questions to be answered for Module 4)
The following 11 questions (Q1 to Q11) are based on the following summarized research:
(you will need your z-tables from Howell to complete many of these questions)
A psychologist studied self-esteem scores and found the data set to be normally
distributed with a mean of 60 and a standard deviation of 5.
Part A**What raw score cuts off the bottom 33% of this distribution?
Steps:
Q1: What is the z-score that cuts off the bottom 33% of this distribution?
Q2:
What is the raw score that cuts off the bottom 33% of this distribution?
Part B**What percentage of the scores is between 65 and 70?
Steps:
Q3: What is the z-score that corresponds to the raw score of 65?
Q4:
What is the z-score that corresponds to the raw score of 70?
Q5:
What percentage of the scores is between 65 and 70?
Part C:**A raw score of 57.5 is associated with what percentile?
Steps:
Q6: What is the z-score associated with a raw score of 57.5?
Q7:
A raw score of 57.5 is associated with what percentile?
Part D:**What raw scores mark the middle 95% of this distribution?
Steps:
Q8: What are the z-scores that mark the middle 95% of this distribution?
Q9:
What is the raw score below the mean?
Q10: What is the raw score above the mean?
Part E:**What is the median of this distribution?
Q11: What is the median of this distribution?
The following 9 questions (Q12 to Q20) are conceptual questions based on Modules 3 and 4.
Q12: In a positively skewed distribution, Alice scored the mean, Betty scored the median, and
Claire scored the mode. Who had the lowest score?
A. Alice
B. Betty
C. Claire
D. All three scored approximately the same
Q13: In a normal distribution, Alice scored the mean, Betty scored the median, and Claire
scored the mode. Who had the lowest score?
A. Alice
B. Betty
C. Claire
D. All three scored approximately the same
Q14: The z-distribution always has a mean of _____ and a standard deviation of _____.
A. 1; 0
B. 0; 0
C. 0; 1
D. 1;1
Q15: A test score of 84 was transformed into a standard score of –1.5. If the standard deviation
of test scores was 4, what is the mean of the test scores?
A. 78
B. 89
C. 90
D. 88
Q16: The standard deviation for the sample numbers 8, 9, and 10 is
A. –3.0
B. 0.0
C. .67
D. 1.0
Q17: A university administrator randomly selected 10 freshmen and 10 seniors and asked them
how satisfied they are with life at Ohio University on a 1 (not at all satisfied) to 9 (very satisfied)
scale. The administrator’s date is below:
Mean
Variance
Freshmen
3
10
Seniors
8
1
These results seem to indicate that:
A. freshmen agree more with each other about their life satisfaction than do
seniors
B. seniors agree more with each other about their life satisfaction than do
freshmen
C. all freshman tend to be satisfied with life
D. freshmen and seniors experience equal life satisfaction
E. none of the above are accurate
Q18: A sample of data has a standard deviation of 10. If you were to divide all the scores in the
date set by a factor of two (2), what would the new standard deviation be?
A. 10
B. 5
C. 2.5
D. none of the above
The following 2 questions (Q19 to Q20) are either “True†or “Falseâ€Â
Q19: The variance for a set of data can be a negative value.
Q20: The two parameters that completely characterize a standardized normal distribution
are “μ†and Ã¢â‚¬Å“ÃÆ’â€Â.
Purchase answer to see full
attachment